Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The delivery of protein into mammalian cells enables the dissection and manipulation of biological processes; however, this potency is challenged by the lack of an efficient protein delivery tool and a means to monitor its intracellular trafficking. Herein, we report that the hierarchical self-assembly of tetraphenylethylene (TPE)-featured metal-organic cages (MOCs) and β-cyclodextrin-conjugated polyethylenimine can generate fluorescent supramolecular nanoparticles (FSNPs) to deliver protein into neural cells, a cell line that is hard to transfect using conventional strategy. Further, the aggregation-induced emission (AIE) of TPE enabled the fluorescent monitoring of cytosolic protein release. It is found that FSNPs can deliver and release protein into cytosol for subcellular targeting as fast as 18 h post-delivery. Moreover, the delivery of molecular chaperone DJ-1 using FSNPs activates MAPK/ERK signaling of neural cells to protect cells from oxidative stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202111213 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!