Peritoneal fibrosis is a serious complication of long-term peritoneal dialysis, attributable to inflammation and mitochondrial dysfunction. Mitochonic acid-5 (MA-5), an indole-3-acetic acid derivative, improves mitochondrial dysfunction and has therapeutic potential against various diseases including kidney diseases. However, whether MA-5 is effective against peritoneal fibrosis remains unclear. Therefore, we investigated the effect of MA-5 using a peritoneal fibrosis mouse model. Peritoneal fibrosis was induced in C57BL/6 mice via intraperitoneal injection of chlorhexidine gluconate (CG) every other day for 3 weeks. MA-5 was administered daily by oral gavage. The mice were divided into control, MA-5, CG, and CG + MA-5 groups. Following treatment, immunohistochemical analyses were performed. Fibrotic thickening of the parietal peritoneum induced by CG was substantially attenuated by MA-5. The number of α-smooth muscle actin-positive myofibroblasts, transforming growth factor β-positive cells, F4/80-positive macrophages, monocyte chemotactic protein 1-positive cells, and 4-hydroxy-2-nonenal-positive cells was considerably decreased. In addition, reduced ATP5a1-positive and uncoupling protein 2-positive cells in the CG group were notably increased by MA-5. MA-5 may ameliorate peritoneal fibrosis by suppressing macrophage infiltration and oxidative stress, thus restoring mitochondrial function. Overall, MA-5 has therapeutic potential against peritoneal fibrosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00795-021-00305-6 | DOI Listing |
Front Immunol
January 2025
Department of Nephrology, Second Hospital of Jilin University, Changchun, China.
Long-term exposure of the peritoneum to peritoneal dialysate results in pathophysiological changes in the anatomical organization of the peritoneum and progressive development of peritoneal fibrosis. This leads to a decline in peritoneal function and ultrafiltration failure, ultimately necessitating the discontinuation of peritoneal dialysis, severely limiting the potential for long-term maintenance. Additionally, encapsulating peritoneal sclerosis, a serious consequence of peritoneal fibrosis, resulting in patients discontinuing PD and significant mortality.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Celvia CC AS, Tartu, Estonia.
Background: Endometriosis is characterized by the ectopic growth of endometrial-like cells, causing chronic pelvic pain, adhesions and impaired fertility in women of reproductive age. Usually, these lesions grow in the peritoneal cavity in a hypoxic environment. Hypoxia is known to affect gene expression and protein kinase (PK) activity.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
[This corrects the article DOI: 10.3389/fphar.2023.
View Article and Find Full Text PDFMar Drugs
November 2024
Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
Peritoneal dialysis (PD) serves as a home-based kidney replacement therapy with increasing utilization across the globe. However, long-term use of high-glucose-based PD solution incites repeated peritoneal injury and inevitable peritoneal fibrosis, thus compromising treatment efficacy and resulting in ultrafiltration failure eventually. In the present study, we utilized human mesothelial MeT-5A cells for the in vitro experiments and a PD mouse model for in vivo validation to study the pathophysiological mechanisms underneath PD-associated peritoneal fibrosis.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, China.
[This corrects the article DOI: 10.3389/fphar.2022.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!