Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
New photophysical and antioxidant materials of trimesic trihydrazide derivatives were synthesized by one-pot stage of trimesic trihydrazide and different aromatic aldehydes. All compounds were characterized by spectroscopic techniques (NMR, MS, and IR) and elemental analysis. The absorption and emission spectral characteristics of hydrazone derivatives were investigated. The absorption maxima showed red shift relative to the starting compound. While the emission maxima showed clear dependent on the type of substituents. The electron donating and electron withdrawing showed red and blue shifts relative to the starting compound, respectively. The compounds' effectiveness as antioxidant was estimated by DPPH radical scavenging and ABTS radical cation assays in vitro which indicated that the derivatives could be used as potential antioxidants. In addition, compounds 3g, and 3i showed strong antioxidant activities according to the DPPH assay and compounds 3c and 3m exhibited good antioxidant activities in ABTS assay. Antimicrobial activity of the derivatives was estimated using a micro-broth dilution method. Furthermore, molecular geometries of all prepared derivatives were fully optimized using density functional theory (DFT) calculations at the 6-31G(d)/B3LYP level of theory.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8482428 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2021.e08074 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!