Cloud computing is among the most beneficial solutions to digital problems. Security is one of the focal issues in cloud computing technology, and this study aims at investigating security issues of cloud computing and their probable solutions. A systematic review was performed using Scopus, Pubmed, Science Direct, and Web of Science databases. Once the title and abstract were evaluated, the quality of studies was assessed in order to choose the most relevant according to exclusion and inclusion criteria. Then, the full texts of studies selected were read thoroughly to extract the necessary results. According to the review, data security, availability, and integrity, as well as information confidentiality and network security, were the major challenges in cloud security. Further, data encryption, authentication, and classification, besides application programming interfaces (API), were security solutions to cloud infrastructure. Data encryption could be applied to store and retrieve data from the cloud in order to provide secure communication. Besides, several central challenges, which make the cloud security engineering process problematic, have been considered in this study.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8485370 | PMC |
http://dx.doi.org/10.25122/jml-2021-0100 | DOI Listing |
PLoS One
January 2025
School of Humanities, Ningbo University of Finance and Economics, Ningbo, Zhejiang, China.
Lightweight container technology has emerged as a fundamental component of cloud-native computing, with the deployment of containers and the balancing of loads on virtual machines representing significant challenges. This paper presents an optimization strategy for container deployment that consists of two stages: coarse-grained and fine-grained load balancing. In the initial stage, a greedy algorithm is employed for coarse-grained deployment, facilitating the distribution of container services across virtual machines in a balanced manner based on resource requests.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
August 2024
Center of Clinical Pharmacology, Third Xiangya Hospital, Central South University, Changsha 410013.
Objectives: Software for pharmacological modeling and statistical analysis is essential for drug development and individualized treatment modeling. This study aims to develop a pharmacokinetic analysis cloud platform that leverages cloud-based benefits, offering a user-friendly interface with a smoother learning curve.
Methods: The platform was built using Rails as the framework, developed in Julia language, and employs PostgreSQL 14 database, Redis cache, and Sidekiq for asynchronous task management.
Comput Biol Med
January 2025
Machine Intelligence Lab, College of Computer Science, Sichuan University, Chengdu, 610065, China.
This paper presents AIScholar, an intelligent research cloud platform developed based on artificial intelligence analysis methods and the OpenFaaS serverless framework, designed for intelligent analysis of clinical medical data with high scalability. AIScholar simplifies the complex analysis process by encapsulating a wide range of medical data analytics methods into a series of customizable cloud tools that emphasize ease of use and expandability, within OpenFaaS's serverless computing framework. As a multifaceted auxiliary tool in medical scientific exploration, AIScholar accelerates the deployment of computational resources, enabling clinicians and scientific personnel to derive new insights from clinical medical data with unprecedented efficiency.
View Article and Find Full Text PDFBiomed Eng Lett
January 2025
School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384 People's Republic of China.
Brain-computer interface (BCI) has been widely used in human-computer interaction. The introduction of artificial intelligence has further improved the performance of BCI system. In recent years, the development of BCI has gradually shifted from personal computers to embedded devices, which boasts lower power consumption and smaller size, but at the cost of limited device resources and computing speed, thus can hardly improve the support of complex algorithms.
View Article and Find Full Text PDFBMC Med Educ
January 2025
The First Clinical Medicine School of Guangdong Pharmaceutical University, Guangdong, People's Republic of China.
Objective: This study examines a novel teaching model that integrates the development and use of a Medical Cloud Dictionary with project-based learning (PBL). We investigate whether this integrated approach improves teaching effectiveness, enhances student learning outcomes, and reduces teaching pressure compared to traditional PBL.
Methods: One hundred student volunteers were randomly assigned to an experimental group (n = 50) and a control group (n = 50).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!