Pathogenic fungi exhibit a heavy burden on medical care and new therapies are needed. Here, we develop the fungal specific enzyme sterylglucosidase 1 (Sgl1) as a therapeutic target. Sgl1 converts the immunomodulatory glycolipid ergosterol 3β-D-glucoside to ergosterol and glucose. Previously, we found that genetic deletion of Sgl1 in the pathogenic fungus Cryptococcus neoformans (Cn) results in ergosterol 3β-D-glucoside accumulation, renders Cn non-pathogenic, and immunizes mice against secondary infections by wild-type Cn, even in condition of CD4+ T cell deficiency. Here, we disclose two distinct chemical classes that inhibit Sgl1 function in vitro and in Cn cells. Pharmacological inhibition of Sgl1 phenocopies a growth defect of the Cn Δsgl1 mutant and prevents dissemination of wild-type Cn to the brain in a mouse model of infection. Crystal structures of Sgl1 alone and with inhibitors explain Sgl1's substrate specificity and enable the rational design of antifungal agents targeting Sgl1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8497620PMC
http://dx.doi.org/10.1038/s41467-021-26163-5DOI Listing

Publication Analysis

Top Keywords

cryptococcus neoformans
8
antifungal agents
8
ergosterol 3β-d-glucoside
8
sgl1
7
structure inhibition
4
inhibition cryptococcus
4
neoformans sterylglucosidase
4
sterylglucosidase develop
4
develop antifungal
4
agents pathogenic
4

Similar Publications

A 70-year-old man experienced an epileptic seizure. Subsequent MRI performed on close examination revealed high signal in the left occipital cortex on fluid-attenuated inversion recovery. Gadolinium contrast indicated enhancement along the cortex.

View Article and Find Full Text PDF

A 70-year-old man experienced an epileptic seizure. Subsequent MRI performed on close examination revealed high signal in the left occipital cortex on fluid-attenuated inversion recovery. Gadolinium contrast indicated enhancement along the cortex.

View Article and Find Full Text PDF

Green propolis, particularly from the unique flora of the Brazilian Caatinga biome, has gained significant interest due to its diverse chemical composition and biological activities. This study focuses on the chemical characterization and antimicrobial evaluation of Caatinga green propolis. Twelve compounds were isolated through different chromatographic techniques, including flavanones (naringenin, 7--methyleriodictyol, sakuranetin), flavones (hispidulin, cirsimaritin), flavonols (quercetin, quercetin-3-methyl ether, kaempferol, 6-methoxykaempferol, viscosine, penduletin), and one chalcone (kukulkanin B).

View Article and Find Full Text PDF

A Tachyplesin Antimicrobial Peptide from Theraphosidae Spiders with Potent Antifungal Activity Against .

Microorganisms

December 2024

Key Laboratory of Genetic Evolution & Animal Models, Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China.

The venoms of Theraphosidae spiders have evolved into diverse natural pharmacopeias through selective pressures. is a global health threat that frequently causes life-threatening meningitis and fungemia, particularly in immunocompromised patients. In this study, we identify a novel anti- peptide, QS18 (QCFKVCFRKRCFTKCSRS), from the venom gland of China's native spider species by utilizing bioinformatic tools.

View Article and Find Full Text PDF

In this study, a nanocomposite based on copper oxide-zinc oxide nanoparticles and Gum Arabic (GA@CuO-ZnO nanocomposite) was successfully synthesized using green method. Characterization results revealed that the prepared nanocomposite appeared at the nanoscale level, showed excellent dispersion, and formed stable colloidal nano-solutions. The bimetallic GA@CuO-ZnO nanocomposite was evaluated for its anticancer, antibacterial, and antifungal properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!