Exosomes are critical mediators of intercellular communication in the tumor microenvironment. Exosomal circular RNAs (circRNAs) can act as biomarkers and play crucial roles in many cancers, including non-small cell lung cancer (NSCLC). The aim of this study was to explore the functions and regulatory mechanism of exosomal circ_0007385 in NSCLC. The expression levels of circ_0007385, microRNA-1253 (miR-1253), family with sequence similarity 83, member A (FAM83A) mRNA were determined by quantitative real-time PCR (qRT-PCR). Cell Counting Kit-8 (CCK-8), 5-Ethynyl-2'-deoxyuridine (Edu), and colony formation assays were utilized to determine cell proliferation ability. Sphere formation efficiency was determined by sphere formation assay. All protein levels were detected by western blot assay. Exosomes were detected using transmission electron microscopy analysis. Size distribution of exosomes was analyzed by nanoparticle tracking analysis. The interaction between miR-1253 and circ_0007385 or FAM83A was confirmed by dual-luciferase reporter, RNA immunoprecipitation (RIP) and RNA pull-down assays. Mice xenograft model was established to verify the function of circ_0007385 in vivo. Circ_0007385 was upregulated in NSCLC tissues and cells. Knockdown of circ_0007385 inhibited NSCLC cell proliferation and stemness, while exosomal circ_0007385 facilitated NSCLC cell proliferation and stemness. In addition, miR-1253 was a direct target of circ_0007385, and miR-1253 reversed the inhibitory effects of circ_0007385 on cell proliferation and stemness in NSCLC cells. Moreover, FAM83A was a direct target of miR-1253, and miR-1253 suppressed NSCLC cell proliferation and stemness by targeting FAM83A. Furthermore, circ_0007385 knockdown inhibited tumor growth in vivo. Exosomal circ_0007385 promoted NSCLC cell proliferation and stemness by regulating miR-1253/FAM83A axis.

Download full-text PDF

Source
http://dx.doi.org/10.1097/CAD.0000000000001103DOI Listing

Publication Analysis

Top Keywords

cell proliferation
28
proliferation stemness
24
exosomal circ_0007385
16
nsclc cell
16
circ_0007385
11
cell
10
non-small cell
8
cell lung
8
lung cancer
8
stemness regulating
8

Similar Publications

TRPV4 as a Novel Regulator of Ferroptosis in Colon Adenocarcinoma: Implications for Prognosis and Therapeutic Targeting.

Dig Dis Sci

January 2025

Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.

Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.

View Article and Find Full Text PDF

Introduction/objectives: Sjogren's syndrome (SS) is a chronic inflammatory and difficult-to-treat autoimmune disease. Timosaponin AIII (TAIII), a plant-derived steroidal saponin, effectively inhibits cell proliferation, induces apoptosis, and exhibits anti-inflammatory properties. This study explored the mechanisms of action of TAIII in SS treatment by studying gut microbiota and short-chain fatty acids (SCFAs) using fecal metabolomics.

View Article and Find Full Text PDF

Development of Electrospinning Setup for Vascular Tissue-Engineering Application with Thick-Hierarchical Fiber Alignment.

Tissue Eng Regen Med

January 2025

College of Materials Science and Engineering, Hunan University, Changsha, 410072, People's Republic of China.

Background: Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.

Methods: A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring.

View Article and Find Full Text PDF

∆-Tetrahydrocannabinol Increases Growth Factor Release by Cultured Adipose Stem Cells and Adipose Tissue in vivo.

Tissue Eng Regen Med

January 2025

Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.

Background: Because of its biocompatibility and its soft and dynamic nature, the grafting of adipose tissue is regarded an ideal technique for soft-tissue repair. The adipose stem cells (ASCs) contribute significantly to the regenerative potential of adipose tissue, because they can differentiate into adipocytes and release growth factors for tissue repair and neovascularization to facilitate tissue survival. The present study tested the effect of administering a chronic low dose of ∆-tetrahydrocannabinol (THC) on these regenerative properties, in vitro and in vivo.

View Article and Find Full Text PDF

Design, synthesis, and in vitro antitumor evaluation of novel benzimidazole acylhydrazone derivatives.

Mol Divers

January 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.

This study focuses on the design, synthesis, and evaluation of benzimidazole derivatives for their anti-tumor activity against A549 and PC-3 cells. Initial screening using the MTT assay identified compound 5m as the most potent inhibitor of A549 cells with an IC of 7.19 μM, which was superior to the positive agents 5-Fluorouracil and Gefitinib.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!