A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prognostic models for mortality after cardiac surgery in patients with infective endocarditis: a systematic review and aggregation of prediction models. | LitMetric

Prognostic models for mortality after cardiac surgery in patients with infective endocarditis: a systematic review and aggregation of prediction models.

Clin Microbiol Infect

Clinical Biostatistics Unit, Hospital Universitario Ramon y Cajal (IRYCIS), Madrid, Spain; CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain; WHO Collaborating Centre for Global Women's Health, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK.

Published: October 2021

Background: There are several prognostic models to estimate the risk of mortality after surgery for active infective endocarditis (IE). However, these models incorporate different predictors and their performance is uncertain.

Objective: We systematically reviewed and critically appraised all available prediction models of postoperative mortality in patients undergoing surgery for IE, and aggregated them into a meta-model.

Data Sources: We searched Medline and EMBASE databases from inception to June 2020.

Study Eligibility Criteria: We included studies that developed or updated a prognostic model of postoperative mortality in patient with IE.

Methods: We assessed the risk of bias of the models using PROBAST (Prediction model Risk Of Bias ASsessment Tool) and we aggregated them into an aggregate meta-model based on stacked regressions and optimized it for a nationwide registry of IE patients. The meta-model performance was assessed using bootstrap validation methods and adjusted for optimism.

Results: We identified 11 prognostic models for postoperative mortality. Eight models had a high risk of bias. The meta-model included weighted predictors from the remaining three models (EndoSCORE, specific ES-I and specific ES-II), which were not rated as high risk of bias and provided full model equations. Additionally, two variables (age and infectious agent) that had been modelled differently across studies, were estimated based on the nationwide registry. The performance of the meta-model was better than the original three models, with the corresponding performance measures: C-statistics 0.79 (95% CI 0.76-0.82), calibration slope 0.98 (95% CI 0.86-1.13) and calibration-in-the-large -0.05 (95% CI -0.20 to 0.11).

Conclusions: The meta-model outperformed published models and showed a robust predictive capacity for predicting the individualized risk of postoperative mortality in patients with IE.

Protocol Registration: PROSPERO (registration number CRD42020192602).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmi.2021.05.051DOI Listing

Publication Analysis

Top Keywords

postoperative mortality
16
risk bias
16
prognostic models
12
models
10
infective endocarditis
8
prediction models
8
models postoperative
8
mortality patients
8
nationwide registry
8
high risk
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!