Photoinduced-reset and multilevel storage transistor memories based on antimony-doped tin oxide nanoparticles floating gate.

Nanotechnology

College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China.

Published: October 2021

Recently, antimony-doped tin oxide nanoparticles (ATO NPs) have been widely used in the fields of electronics, photonics, photovoltaics, sensing, and other fields because of their good conductivity, easy synthesis, excellent chemical stability, high mechanical strength, good dispersion and low cost. Herein, for the first time, a novel nonvolatile transistor memory device is fabricated using ATO NPs as charge trapping sites to enhance the memory performance. The resulting organic nano-floating gate memory (NFGM) device exhibits outstanding memory properties, including tremendous memory window (∼85 V), superhigh memory on/off ratio (∼10), long data retention (over 10 years) and eminent multilevel storage behavior, which are among the optimal performances in NFGM devices based on organic field effect transistors. Additionally, the device displays photoinduced-reset characteristic with low energy consumption erasing operation. This study provides novel avenues for the manufacture of simple and low-cost data storage devices with outstanding memory performance, multilevel storage behavior and suitability as platforms for integrated circuits.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ac2dc5DOI Listing

Publication Analysis

Top Keywords

multilevel storage
12
antimony-doped tin
8
tin oxide
8
oxide nanoparticles
8
ato nps
8
memory performance
8
outstanding memory
8
storage behavior
8
memory
7
photoinduced-reset multilevel
4

Similar Publications

In this letter, we investigated the impact of percolation transport mechanisms on ferroelectric field effect transistor (FeFET) multi-value storage with Kinetic Monte-Carlo (KMC) simulation considering aspect ratio and temperature dependencies. It is found that the portion of the ferroelectric polarization, which dominated the threshold voltage shift of the FeFET, increases when aspect ratio of device decreases. Moreover, randomness of percolation path formation and variations of equivalent conductance can be suppressed, indicating mitigation of device-to-device variations and enhancement of separation of individual states.

View Article and Find Full Text PDF

Template-Guided Nondeterministic Assembly of Organosilica Nanodots for Multifunctional Physical Unclonable Functions.

ACS Appl Mater Interfaces

January 2025

Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China.

Optical physical unclonable functions (PUFs) are gaining attention as a robust security solution for identification in the expanding Internet of Things (IoT). To enhance the security and functionality of PUFs, integrating multiple optical responses─such as fluorescence and structural color─into a single system is essential. These diverse optical properties enable multilevel authentication, where different layers of security can be verified under varying light conditions, greatly reducing the risk of counterfeiting.

View Article and Find Full Text PDF

Objective: This study examined the longitudinal development of metacognitive skills and clinical decision-making abilities in nursing students, focusing on the interactions between metacognitive processes, situational factors, and individual differences.

Methods: A longitudinal, quantitative design was employed, following 185 third-year nursing students from a major university in China over one academic year. Data were collected at six time points using the Metacognitive Awareness Inventory, Nursing Decision-Making Instrument, and custom-designed clinical scenario assessments.

View Article and Find Full Text PDF

The complex pathology of Parkinson's disease (PD) requires comprehensive understanding and multi-pronged interventions for communication between nerve cells. Despite new developments in nanotechnology in the treatment of PD, in-depth exploration of their biological effects, in particular, the specific mechanisms of inflammation inhibition are lacking. Herein, using the stable cascade catalysis channel formed by polydopamine (PDA), imidazole groups, and Cu ions, a microgel system comprising functional monomers [superoxide dismutase (SOD) with double bonds, PDA, 2-methacryloyloxy ethyl phosphorylcholine (MPC), and Cu ions] is proposed for managing PD.

View Article and Find Full Text PDF

Controllable reconstruction of lignified biomass with molecular scissors to form carbon frameworks for highly stable Li metal batteries.

Chem Sci

December 2024

Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China

Lithium metal batteries (LMBs) promise high-energy-density storage but face safety issues due to dendrite-induced lithium deposition, irreversible electrolyte consumption, and large volume changes, which hinder their practical applications. To address these issues, tuning lithium deposition by structuring a host for the lithium metal anode has been recognized as an efficient method. Herein, we report a supercritical water molecular scissor-controlled strategy to form a carbon framework derived from biomass wood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!