Heterodimerization of H3K9 histone methyltransferases G9a and GLP activates methyl reading and writing capabilities.

J Biol Chem

Department of Microbiology & Immunology, George Williams Hooper Foundation, University of California San Francisco, San Francisco, California, USA. Electronic address:

Published: November 2021

Unique among metazoan repressive histone methyltransferases, G9a and GLP, which chiefly target histone 3 lysine 9 (H3K9), require dimerization for productive H3K9 mono (me1)- and dimethylation (me2) in vivo. Intriguingly, even though each enzyme can independently methylate H3K9, the predominant active form in vivo is a heterodimer of G9a and GLP. How dimerization influences the central H3K9 methyl binding ("reading") and deposition ("writing") activity of G9a and GLP and why heterodimerization is essential in vivo remains opaque. Here, we examine the H3K9me "reading" and "writing" activities of defined, recombinantly produced homo- and heterodimers of G9a and GLP. We find that both reading and writing are significantly enhanced in the heterodimer. Compared with the homodimers, the heterodimer has higher recognition of H3K9me2, and a striking ∼10-fold increased turnover rate for nucleosomal substrates under multiple turnover conditions, which is not evident on histone tail peptide substrates. Cross-linking Mass Spectrometry suggests that differences between the homodimers and the unique activity of the heterodimer may be encoded in altered ground state conformations, as each dimer displays different domain contacts. Our results indicate that heterodimerization may be required to relieve autoinhibition of H3K9me reading and chromatin methylation evident in G9a and GLP homodimers. Relieving this inhibition may be particularly important in early differentiation when large tracts of H3K9me2 are typically deposited by G9a-GLP, which may require a more active form of the enzyme.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8564726PMC
http://dx.doi.org/10.1016/j.jbc.2021.101276DOI Listing

Publication Analysis

Top Keywords

g9a glp
24
histone methyltransferases
8
methyltransferases g9a
8
reading writing
8
active form
8
g9a
6
glp
6
heterodimerization h3k9
4
histone
4
h3k9 histone
4

Similar Publications

is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside and (. CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML) and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways, respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing derepression of silenced elements in heterochromatin.

View Article and Find Full Text PDF

G9a/GLP Modulators: Inhibitors to Degraders.

J Med Chem

January 2025

SANKEN, Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan.

Article Synopsis
  • Histone methylation is a key part of epigenetics, involving enzymes like G9a that modify histones and regulate DNA processes such as replication and gene expression.
  • Overexpression of G9a is linked to cancer development and progression, making it an appealing target for new cancer therapies.
  • Research is also uncovering the role of G9a in diseases like Alzheimer's, leading to the development of G9a inhibitors that could treat various conditions by disrupting harmful signaling pathways.
View Article and Find Full Text PDF

Phenomics-Based Discovery of Novel Orthosteric Choline Kinase Inhibitors.

Angew Chem Int Ed Engl

December 2024

Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.

Article Synopsis
  • CHKA is a key player in cell metabolism and is linked to cancer and immune function, but developing effective inhibitors has been challenging.
  • Researchers discovered that CHKA is an off-target for specific inhibitors, which helps clarify previous inconsistencies in related studies.
  • Modulating CHKA affects immune responses, particularly B-cell maturation and IgG secretion, indicating its significant role in immune signaling.
View Article and Find Full Text PDF

Structure and Methyl-lysine Binding Selectivity of the HUSH Complex Subunit MPP8.

J Mol Biol

January 2025

Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK. Electronic address:

The Human Silencing Hub (HUSH) guards the genome from the pathogenic effects of retroelement expression. Composed of MPP8, TASOR, and Periphilin-1, HUSH recognizes actively transcribed retrotransposed sequences by the presence of long (>1.5-kb) nascent transcripts without introns.

View Article and Find Full Text PDF

Chronic myelomonocytic leukemia (CMML) is a severe myeloid malignancy affecting the elderly, for which therapeutic options are limited. DNA hypomethylating agents (HMAs) provide transient responses, failing to eradicate the malignant clone. Hematopoietic stem cell (HSC) aging involves heterochromatin reorganization, evidenced by alterations in histone marks H3K9me2 and H3K9me3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!