A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Therapeutic potentials of human microfluidic encapsulated conjunctival mesenchymal stem cells on the rat model of Parkinson's disease. | LitMetric

Background And Aim: Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by the destruction of the dopaminergic neurons in the nigrostriatal pathway, leading to motor-behavioral complications. Cell therapy has been proposed as a promising approach for PD treatment using various cellular sources. Despite a few disadvantages mesenchymal stem cells (MSCs) represent, they have more auspicious effects for PD cell therapy. The present study aimed to evaluate a new source of MSCs isolated from human Conjunctiva (CJ-MSCs) impact on PD complications for the first time.

Materials And Methods: Parkinson's was induced by stereotactic injection of 6-hydroxydopamine (6-OHDA) into the right medial forebrain bundle (MFB). An apomorphine-induced rotation test was used to confirm the model establishment. After PD model confirmation, green fluorescent protein (GFP) labeled CJ-MSCs and induced CJ-MSCs (microfluidic encapsulated and non-capsulated) were transplanted into the rats' right striatum. Then Rotation, Rotarod, and Open-field tests were performed to evaluate the behavioral assessment. Additionally, the immunohistochemistry technique was used for identifying tyrosine hydroxylase (TH).

Results: According to the obtained data, the cell transplantation caused a reduction in the rats' rotation number and improved locomotion compared to the control group. The previous results were also more pronounced in induced and microfluidic encapsulated cells compared to other cells. Rats recipient CJ-MSCs also have represented more TH-expressed GFP-labeled cell numbers in the striatum than the control group.

Conclusion: It can be concluded that CJ-MSCs therapy can have protective effects against PD complications and nerve induction of cells due to their ability to express dopamine. On the other hand, CJ-MSCs microencapsulating leads to enhance even more protective effect of CJ-MSCs. However, confirmation of this hypothesis requires further studies and investigation of these cells' possible mechanisms of action.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexmp.2021.104703DOI Listing

Publication Analysis

Top Keywords

microfluidic encapsulated
12
mesenchymal stem
8
stem cells
8
parkinson's disease
8
cell therapy
8
cj-mscs
7
cells
5
therapeutic potentials
4
potentials human
4
human microfluidic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!