Soybean (Glycine max (L.) Merr.) has been disseminated globally as a photoperiod/temperature-sensitive crop with extremely diverse days to flowering (DTF) and days to maturity (DTM) values. A population with 371 global varieties covering 13 geographic regions and 13 maturity groups (MGs) was analyzed for its DTF and DTM QTL-allele constitution using restricted two-stage multi-locus genome-wide association study (RTM-GWAS). Genotypes with 20 701 genome-wide SNPLDBs (single-nucleotide polymorphism linkage disequilibrium blocks) containing 55 404 haplotypes were observed, and 52 DTF QTLs and 59 DTM QTLs (including 29 and 21 new ones) with 241 and 246 alleles (two to 13 per locus) were detected, explaining 84.8% and 74.4% of the phenotypic variance, respectively. The QTL-allele matrix characterized with all QTL-allele information of each variety in the global population was established and subsequently separated into geographic and MG set submatrices. Direct comparisons among them revealed that the genetic adaptation from the origin to geographic subpopulations was characterized by new allele/new locus emergence (mutation) but little allele exclusion (selection), while that from the primary MG set to emerged early and late MG sets was characterized by allele exclusion without allele emergence. The evolutionary changes involved mainly 72 DTF and 71 DTM alleles on 28 respective loci, 10-12 loci each with three to six alleles being most active. Further recombination potential for faster maturation (12-21 days) or slower maturation (14-56 days) supported allele convergence (recombination) as a constant genetic factor in addition to migration (inheritance). From the QTLs, 44 DTF and 36 DTM candidate genes were annotated and grouped respectively into nine biological processes, indicating multi-functional DTF/DTM genes are involved in a complex gene network. In summary, we identified QTL-alleles relatively thoroughly using RTM-GWAS for direct matrix comparisons and subsequent analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tpj.15531 | DOI Listing |
Genes (Basel)
January 2025
International Institute of Tropical Agriculture, PMB 3112, Kano 700223, Nigeria.
Background/objectives: Cowpea is an important legume crop in sub-Saharan Africa (SSA) and beyond. However, access to phosphorus (P), a critical element for plant growth and development, is a significant constraint in SSA. Thus, it is essential to have high P-use efficiency varieties to achieve increased yields in environments where little-to- no phosphate fertilizers are applied.
View Article and Find Full Text PDFFront Genet
August 2024
Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
Introduction: Turnip rape is recognized as an oilseed crop contributing to environmentally sustainable agriculture via integration into crop rotation systems. Despite its various advantages, the crop's cultivation has declined globally due to a relatively low productivity, giving way to other crops. The use of genomic tools could enhance the breeding process and accelerate genetic gains.
View Article and Find Full Text PDFPlants (Basel)
June 2024
National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea.
Sesame is an important oilseed crop grown for human consumption in many countries, with a high commercial value due to its high oleic/linoleic acid ratio (O/L ratio). However, its properties may vary among different accessions. In the current study, 282 sesame accessions were evaluated to determine the effects of agronomic traits and genotypes on the O/L ratio.
View Article and Find Full Text PDFPlant J
December 2021
Soybean Research Institute & MOA National Center for Soybean Improvement & MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General) & State Key Laboratory for Crop Genetics and Germplasm Enhancement & Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
Soybean (Glycine max (L.) Merr.) has been disseminated globally as a photoperiod/temperature-sensitive crop with extremely diverse days to flowering (DTF) and days to maturity (DTM) values.
View Article and Find Full Text PDFPlant Genome
November 2021
Institute of Plant Breeding, Genetics, and Genomics, and Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA.
Soybean [Glycinemax (L.) Merr.] maturity determines the growing region of a given soybean variety and is a primary factor in yield and other agronomic traits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!