A Parachlorella kessleri (Trebouxiophyceae, Chlorophyta) strain tolerant to high concentration of calcium chloride.

J Eukaryot Microbiol

School of Life Science, Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, China.

Published: January 2022

Members of coccoid green algae have been documented in various extreme environments. In this article, a unicellular green alga was found to slowly grow in high concentration (3.6 g/L) and pure calcium chloride solution in the laboratory. It was successfully cultured and a taxonomic study combined approaches of morphological and molecular methods was conducted to determine its classification attribution, which was followed by a preliminary physiology research to explore its unique tolerance characteristics against calcium chloride stress. The strain was identified as Parachlorella kessleri by very similar morphology and the same phylogenetic position. The morphological differences among the three species in genus Parachlorella were then discussed and the characteristic traits of absent or thin mucilaginous envelop and mantel-shaped chloroplast for P. kessleri were supported. In addition, the almost strictly spherical shape of adult cells could further distinguish the P. kessleri from the other two species. The tolerant characteristics to CaCl  stress for this strain were confirmed and the limit concentration was revealed as between 2000 and 4000 times than the standard BG11 culture concentration. Therefore, this P. kessleri strain is expected to be a good material to explore the mechanism of resistance to calcium ions stress for eukaryotic microbiology.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jeu.12872DOI Listing

Publication Analysis

Top Keywords

calcium chloride
12
parachlorella kessleri
8
high concentration
8
kessleri trebouxiophyceae
4
trebouxiophyceae chlorophyta
4
strain
4
chlorophyta strain
4
strain tolerant
4
tolerant high
4
concentration
4

Similar Publications

In this study, a walnut peptide (WP) with calcium-binding capacity was prepared using a combination of alkalase and neutrase. The conditions for the preparation of walnut peptide calcium chelate (WP-Ca) were optimised (a peptide/calcium chloride ratio of 1 : 4 for 70 min at 50 °C and pH 9.5).

View Article and Find Full Text PDF

Ion channels play a crucial role in cardiac functions, and their activities exhibit dynamic changes during heart development. However, the precise function of ion channels in human heart development remains elusive. In this study, we utilized human embryonic stem cells (hESCs) as a model to mimic the process of human embryonic heart development.

View Article and Find Full Text PDF

TMEM16A, a key calcium-activated chloride channel, is crucial for many physiological and pathological processes such as cancer, hypertension, and osteoporosis, etc. However, the regulatory mechanism of TMEM16A is poorly understood, limiting the discovery of effective modulators. Here, we unveil an allosteric gating mechanism by presenting a high-resolution cryo-EM structure of TMEM16A in complex with a channel inhibitor that we identified, Tamsulosin, which is resolved at 2.

View Article and Find Full Text PDF

Encapsulation of Beauveria bassiana conidia as a new strategy for the biological control of Aedes aegypti larvae.

Sci Rep

December 2024

Laboratório de Entomologia e Fitopatologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil.

The virulence of encapsulated fungal conidia against Aedes aegypti larvae was investigated. Molecular studies confirmed that the fungal isolate used here was Beauveria bassiana. Different conidial concentrations were tested.

View Article and Find Full Text PDF

Because a significant portion of oil remains in carbonate reservoirs, efficient techniques are essential to increase oil recovery from carbonate reservoirs. Wettability alteration is crucial for enhanced oil recovery (EOR) from oil-wet reservoirs. This study investigates the impact of different substances on the wettability of dolomite and calcite rocks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!