Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, montmorillonite clay was coated with zinc oxide (ZnO) nanoparticles. The study's primary aim is to investigate the adsorption properties of zinc oxide coated montmorillonite adsorbent against methylene blue (MB), and determine ZnO's effectiveness in adsorption. First, the surface properties of the ZnO-coated montmorillonite (ZnO/MMT) adsorbent were determined by FTIR Spectroscopy, XRD, and SEM/EDS. In the adsorption studies, the effects of different parameters such as contact time (5-150 min), adsorbent dosage (0.05-0.5 g), initial concentration (50-200 mg/L), temperature (298-318 K), and initial pH (4-12) were investigated. In addition, a fuzzy model was developed by using adsorption parameters so that the removal rates could be calculated more quickly. Adsorption kinetics and equilibrium results were explained by the pseudo-second-order model and the Langmuir isotherm model, respectively. The highest adsorption capacity was calculated as 384.62 mg/g at 318 K. The enthalpy value was calculated as 2.16 kJ/mol. The entropy value was calculated as 0.04 kJ/mol K. The negative entropy value in the thermodynamic parameters calculated at all temperatures shows that the adsorption was spontaneous. According to the data we obtained, ZnO/MMT nanoparticles can be successfully applied for MB removal from aqueous solutions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15226514.2021.1984386 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!