Adaptive immune responses to SARS-CoV-2 infection have been extensively characterized in blood; however, most functions of protective immunity must be accomplished in tissues. Here, we report from examination of SARS-CoV-2 seropositive organ donors (ages 10 to 74) that CD4 T, CD8 T, and B cell memory generated in response to infection is present in the bone marrow, spleen, lung, and multiple lymph nodes (LNs) for up to 6 months after infection. Lungs and lung-associated LNs were the most prevalent sites for SARS-CoV-2–specific memory T and B cells with significant correlations between circulating and tissue-resident memory T and B cells in all sites. We further identified SARS-CoV-2–specific germinal centers in the lung-associated LNs up to 6 months after infection. SARS-CoV-2–specific follicular helper T cells were also abundant in lung-associated LNs and lungs. Together, the results indicate local tissue coordination of cellular and humoral immune memory against SARS-CoV-2 for site-specific protection against future infectious challenges.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8626868PMC
http://dx.doi.org/10.1126/sciimmunol.abl9105DOI Listing

Publication Analysis

Top Keywords

lung-associated lns
12
sars-cov-2 infection
8
lns months
8
months infection
8
memory cells
8
memory
5
sars-cov-2
4
infection generates
4
generates tissue-localized
4
tissue-localized immunological
4

Similar Publications

Older people are particularly susceptible to infectious and neoplastic diseases of the lung and it is unclear how lifelong exposure to environmental pollutants affects respiratory immune function. In an analysis of human lymph nodes (LNs) from 84 organ donors aged 11-93 years, we found a specific age-related decline in lung-associated, but not gut-associated, LN immune function linked to the accumulation of inhaled atmospheric particulate matter. Increasing densities of particulates were found in lung-associated LNs with age, but not in the corresponding gut-associated LNs.

View Article and Find Full Text PDF

Adaptive immune responses to SARS-CoV-2 infection have been extensively characterized in blood; however, most functions of protective immunity must be accomplished in tissues. Here, we report from examination of SARS-CoV-2 seropositive organ donors (ages 10 to 74) that CD4 T, CD8 T, and B cell memory generated in response to infection is present in the bone marrow, spleen, lung, and multiple lymph nodes (LNs) for up to 6 months after infection. Lungs and lung-associated LNs were the most prevalent sites for SARS-CoV-2–specific memory T and B cells with significant correlations between circulating and tissue-resident memory T and B cells in all sites.

View Article and Find Full Text PDF

Our aim was to improve a method for detecting respiratory hypersensitivity by testing three confirmed respiratory allergens (trimellitic anhydride [TMA], phthalic anhydride [PA] and toluene diisocyanate [TDI]), an environmental chemical of uncertain allergenicity (2,4-d-butyl [DB]), a confirmed contact allergen (2,4-dinitrochlorobenzene [DNCB]) and a standard irritant (sodium dodecyl sulfate [SDS]). BALB/c mice were topically sensitized (nine times in 3 weeks) with these chemicals, then challenged via the trachea. One day post-challenge, samples were taken from the mice to assay for total immunoglobulin (IgE and IgG(1)) levels in serum and bronchoalveolar lavage fluid (BALF); differential cell counts and cytokine/chemokine levels in BALF; lymphocyte counts and surface antigen expression on B-cells within lung-associated lymph nodes (LNs); ex situ cytokine production by cells from these LNs; and gene expression in BALF (CCR3) and LNs (CCR4, STAT6 and GATA-3).

View Article and Find Full Text PDF

Several types of pesticides, such as organophosphates, phenoxyacetic acid, and carbamate have a high risk of affecting human health, causing allergic rhinitis and bronchial asthma-like diseases. We used our long-term sensitization method and a local lymph node assay to examine the allergic reactions caused by several types of pesticides. BALB/c mice were topically sensitized (9 times in 3 weeks), then challenged dermally or intratracheally with 2,4-D, BRP, or furathiocarb.

View Article and Find Full Text PDF

The inhalation of many types of chemicals, including pesticides, perfumes, and other low-molecular weight chemicals, is a leading cause of allergic respiratory diseases. We attempted to develop a new test protocol to detect environmental chemical-related respiratory hypersensitivity at low and weakly immunogenic doses. We used long-term dermal sensitization followed by a low-dose intratracheal challenge to evaluate sensitization by the well-known respiratory sensitizers trimellitic anhydride (TMA) and toluene diisocyanate (TDI) and the contact sensitizer 2,4-dinitrochlorobenzene (DNCB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!