Double Tethered Metallacyclobutane Catalyst for Cyclic Polymer Synthesis.

J Am Chem Soc

Department of Chemistry, Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States.

Published: October 2021

AI Article Synopsis

  • This work presents a method for creating a catalyst for cyclic polymer synthesis using easy-to-find materials in just one or two steps.
  • The system involves a molybdenum-alkylidene and ene-ol proligand, leading to a complex that behaves differently in solution and maintains a stable structure in solid form.
  • The complex serves as a precatalyst for the polymerization of norbornene, with methods like NMR spectroscopy and GPC used to analyze its efficiency and confirm the production of cyclic polynorbornene.

Article Abstract

This work outlines an approach to creating a catalyst for cyclic polymer synthesis using readily available materials in only one or two steps. Combining commercially available molybdenum-alkylidene with two equivalents of ene-ol proligand rapidly produces, in quantitative yield (H NMR spectroscopy), the double tethered metallacyclobutane complex . Characterized by variable temperature NMR studies and nuclear Overhauser effect spectroscopy (NOESY) experiments, complex exhibits fluxional behavior in solution. Determined by single crystal X-ray diffraction, the solid-state structure of complex reveals metrical parameters indicating that the metallacyclobutane is not predicted to undergo rapid retro-cycloaddition. However, complex is a precatalyst for the polymerization of norbornene to produce cyclic polynorbornene. An NMR spectrum of a test polymerization indicates that only a small fraction of the precatalyst is activated upon exposure to monomer. Quantifying the active catalyst is possible by measuring vinyl resonances that appear in the H NMR spectrum. The vinyl resonances are attributable to the release of one of the tethers upon norbornene addition. Confirmation of the polymer cyclic topology comes from gel permeation chromatography (GPC), dynamic light scattering (DLS), and intrinsic viscosity (η) measurements. The double tethered metallacyclobutane complex is a novel design for catalytic cyclic polymer synthesis. The synthetic approach suggests that catalyst tuning is possible by a choice of the commercial alkylidene and alteration of the ene-ol proligand.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.1c08806DOI Listing

Publication Analysis

Top Keywords

double tethered
12
tethered metallacyclobutane
12
cyclic polymer
12
polymer synthesis
12
catalyst cyclic
8
ene-ol proligand
8
metallacyclobutane complex
8
nmr spectrum
8
vinyl resonances
8
cyclic
5

Similar Publications

Optical tweezers in biomedical research - progress and techniques.

J Med Life

November 2024

Biophysics and Cellular Biotechnology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.

Optical tweezers, which leverage the forces exerted by radiation pressure, have emerged as a pivotal technique for precisely manipulating and analyzing microscopic particles. Since Arthur Ashkin's ground-breaking work in the 1970s and the subsequent development of the single-beam optical trap in 1986, the capabilities of optical tweezers have expanded significantly, enabling the intricate manipulation of biological specimens at the micro- and nanoscale. This review elucidates the foundational principles of optical trapping and their extensive applications in the biomedical sciences.

View Article and Find Full Text PDF

Artificially tagging tumors with nano-aluminum adjuvant-tethered antigen mRNA recruits and activates antigen-specific cytotoxic T cells for enhanced cancer immunotherapy.

Biomaterials

January 2025

Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518107, China; School of Medicine, Hangzhou City University, Hangzhou, 310015, China; Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, 315040, China. Electronic address:

T cell therapy for solid tumors faces significant challenges due to the immune off-target attack caused by the loss of tumor surface antigens and inactivation in acidic tumor microenvironment (TME). Herein, we developed a bifunctional immunomodulator (MO@NAL) by loading ovalbumin (OVA; model antigen) mRNA (mOVA) onto lysozyme-coated layered double hydroxide nano-aluminum adjuvant (NA). The NA's inherent alkalinity effectively neutralizes the excess acid within the TME and suppresses regulatory T cells, creating a favorable microenvironment to enhance cytotoxic T cell infiltration and activation in tumors.

View Article and Find Full Text PDF

Objectives: The objective of this study is to evaluate the diagnostic performance of perineal access cannulas tethered to a biplanar ultrasound probe in cognitive transperineal prostate biopsies of targets identified by multiparametric magnetic resonance imaging (mpMRI) by comparing the results of the PrecisionPoint (PP) Transperineal Access System with the double-freehand (DFH) technique.

Patients And Methods: All patients who underwent cognitive transperineal prostate biopsy of mpMRI targets using the PP or DFH technique between November 2020 and September 2023 were enrolled. All data related to mpMRI target biopsies were stratified by technique, visibility in transrectal ultrasound and analysed by comparing PP versus DFH.

View Article and Find Full Text PDF

Study Design: Single-center retrospective cohort study.

Objective: To compare the correction of fractional curve and L5 tilt in 2RVBT versus PSF with LIV in the lumbar spine.

Summary Of Background Data: Vertebral body tethering, an AIS fusion-alternative, avoids rigid constructs, allowing for lower instrumented vertebra (LIV) selection.

View Article and Find Full Text PDF

Single-Molecule Visualization of BLM-DNA2-Mediated DNA End Resection Using DNA Curtains.

Methods Mol Biol

December 2024

Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, USA.

Homologous recombination (HR) is the principal pathway undertaken by a cell for the error-free repair of DNA double-strand breaks that are frequently encountered by the cell. HR can be initiated at the sites of DNA double-strand breaks by generating long stretches of single-stranded 3' DNA overhang through a process called DNA end resection. In one DNA end resection pathway, this is achieved via the concerted effort of specialized machinery involving the RecQ family helicase BLM, the helicase/endonuclease DNA2, and a single-strand DNA binding protein complex RPA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!