Cotyledon opening is a key morphological change that occurs in seedlings during de-etiolation. Brassinosteroids (BRs) inhibit the opening of cotyledons in darkness while light promotes cotyledon opening. The molecular regulation of the interplay between light and BR to regulate cotyledon opening is not well understood. Here, we show the B-box protein BBX32 negatively regulates light signaling and promotes BR signaling to inhibit cotyledon opening in Arabidopsis (Arabidopsis thaliana). BBX32 is highly expressed in the cotyledons of seedlings during de-etiolation. bbx32 and 35S:BBX32 seedlings exhibit enhanced and reduced cotyledon opening, respectively, in response to both light and brassinazole treatment in dark, suggesting that BBX32 mediates cotyledon opening through both light and BR signaling pathways. BBX32 expression is induced by exogenous BR and is upregulated in bzr1-1D (BRASSINAZOLE RESISTANT1-1D). Our in vitro and in vivo interaction studies suggest that BBX32 physically interacts with BZR1. Further, we found that PHYTOCHROME-INTERACTING FACTOR 3 (PIF3) interacts with BBX32 and promotes BR-mediated cotyledon closure. BBX32, BZR1, and PIF3 regulate the expression of common target genes that modulate the opening and closing of cotyledons. Our work suggests BBX32 integrates light and BR signals to regulate cotyledon opening during de-etiolation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8418414PMC
http://dx.doi.org/10.1093/plphys/kiab304DOI Listing

Publication Analysis

Top Keywords

cotyledon opening
32
bbx32
10
opening
10
cotyledon
9
b-box protein
8
protein bbx32
8
bbx32 integrates
8
integrates light
8
inhibit cotyledon
8
seedlings de-etiolation
8

Similar Publications

After germination, seedlings undergo etiolated development (skotomorphogenesis), enabling them to grow towards the soil surface. In Arabidopsis, etiolated seedlings exhibit rapid hypocotyl elongation, apical hook formation and closed cotyledons to protect the meristem. In this study, we found that high-order mutants in the gene family displayed defects in seedling development, characterized by a shorter hypocotyl, early apical hook opening, and opened cotyledons in the dark.

View Article and Find Full Text PDF

Plants have evolved photoreceptors to optimize their development during primary growth, including germination, hypocotyl elongation, cotyledon opening, and root growth, allowing them to adapt to challenging light conditions. The light signaling transduction pathway during seedling establishment has been extensively studied, but little molecular evidence is available for light-regulated secondary growth, and how light regulates cambium-derived tissue production remains largely unexplored. Here, we show that CRYPTOCHROME (CRY)-dependent blue light signaling and the subsequent attenuation of ELONGATED HYPOCOTYL 5 (HY5) movement to hypocotyls are key inducers of xylem fiber differentiation in Using grafted chimeric plants and hypocotyl-specific transcriptome sequencing of light signaling mutants under controlled light conditions, we demonstrate that the perception of blue light by CRYs in shoots drives secondary cell wall (SCW) deposition at xylem fiber cells during the secondary growth of hypocotyls.

View Article and Find Full Text PDF

Green light mediates atypical photomorphogenesis by dual modulation of Arabidopsis phytochromes B and A.

J Integr Plant Biol

September 2024

National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.

Although green light (GL) is located in the middle of the visible light spectrum and regulates a series of plant developmental processes, the mechanism by which it regulates seedling development is largely unknown. In this study, we demonstrated that GL promotes atypical photomorphogenesis in Arabidopsis thaliana via the dual regulations of phytochrome B (phyB) and phyA. Although the Pr-to-Pfr conversion rates of phyB and phyA under GL were lower than those under red light (RL) in a fluence rate-dependent and time-dependent manner, long-term treatment with GL induced high Pfr/Pr ratios of phyB and phyA.

View Article and Find Full Text PDF

A cytosol-tethered YHB variant of phytochrome B retains photomorphogenic signaling activity.

Plant Mol Biol

June 2024

Department of Molecular and Cellular Biology, University of California, 1 Shields Avenue, Davis, CA, 95616, USA.

The red and far-red light photoreceptor phytochrome B (phyB) transmits light signals following cytosol-to-nuclear translocation to regulate transcriptional networks therein. This necessitates changes in protein-protein interactions of phyB in the cytosol, about which little is presently known. Via introduction of a nucleus-excluding G767R mutation into the dominant, constitutively active phyB (YHB) allele, we explore the functional consequences of expressing a cytosol-localized YHB variant in transgenic Arabidopsis seedlings.

View Article and Find Full Text PDF

The impact of pod storage (PS) and two drying temperatures of fermented cocoa beans was investigated in Ecuador. Therefore, four variations were simultaneously carried out three times at two locations, independently: 0, 3, and 5 days of PS, dried at 60 °C and 0 days of PS, dried at 80 °C. Pod weight during storage, pulp content, pH, temperature, microbial counts, total free amino acids, protein profiles, sugars, organic acids, cut-test, fermentation index, and sensory profiles were analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!