Tomato (Solanum lycopersium), an important fruit crop worldwide, requires efficient sugar allocation for fruit development. However, molecular mechanisms for sugar import to fruits remain poorly understood. Expression of sugars will eventually be exported transporters (SWEETs) proteins is closely linked to high fructose/glucose ratios in tomato fruits and may be involved in sugar allocation. Here, we discovered that SlSWEET15 is highly expressed in developing fruits compared to vegetative organs. In situ hybridization and β-glucuronidase fusion analyses revealed SlSWEET15 proteins accumulate in vascular tissues and seed coats, major sites of sucrose unloading in fruits. Localizing SlSWEET15-green fluorescent protein to the plasma membrane supported its putative role in apoplasmic sucrose unloading. The sucrose transport activity of SlSWEET15 was confirmed by complementary growth assays in a yeast (Saccharomyces cerevisiae) mutant. Elimination of SlSWEET15 function by clustered regularly interspaced short palindromic repeats (CRISPRs)/CRISPR-associated protein gene editing significantly decreased average sizes and weights of fruits, with severe defects in seed filling and embryo development. Altogether, our studies suggest a role of SlSWEET15 in mediating sucrose efflux from the releasing phloem cells to the fruit apoplasm and subsequent import into storage parenchyma cells during fruit development. Furthermore, SlSWEET15-mediated sucrose efflux is likely required for sucrose unloading from the seed coat to the developing embryo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8644451 | PMC |
http://dx.doi.org/10.1093/plphys/kiab290 | DOI Listing |
Int J Mol Sci
December 2024
Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France.
The source-sink relationship is critical for proper plant growth and development, particularly for vegetative axillary buds, whose activity shapes the branching pattern and ultimately the plant architecture. Once formed from axillary meristems, axillary buds remain dormant or become active to grow into new branches. This transition is notably driven by the regulation of the bud sink strength, which is reflected in the ability to unload, metabolize and store photoassimilates.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Institute of Hybrid Wheat, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China.
High-temperature (HT) stress frequently affects the early and middle stages of grain filling in hybrid seed production regions. Photo-thermo-sensitive male-sterile (PTMS) wheat lines, which play a critical role as female parents in hybrid seed production, face challenges under HT conditions. However, the mechanisms governing grain filling in PTMS lines under HT stress remain poorly understood.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea.
Efficient sucrose transport and metabolism are vital for seed and pollen development in plants. Cell wall invertases (CINs) hydrolyze sucrose into glucose and fructose, maintaining a sucrose gradient in the apoplast of sink tissues. In rice, two CIN isoforms, OsCIN1 and OsCIN2, were identified as being specifically expressed in the anthers but not in pollen.
View Article and Find Full Text PDFPlant Physiol
December 2024
Department of Plant Physiology, Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13 Building 12, 10115 Berlin, Germany.
The main phloem loader in potato, sucrose transporter StSUT1, is coexpressed with 2 members of the SWEET gene family: StSWEET11b, a clade III member of SWEET carriers assumed to be involved in sucrose efflux, and StSWEET1g, a clade I member involved in glucose efflux into the apoplast, that physically interacts with StSUT1. We investigated the functionality of SWEET carriers via uptake experiments with fluorescent glucose or sucrose analogs. Inhibition or overexpression of StSWEET1g/SlSWEET1e affected tuberization and flowering in transgenic potato plants.
View Article and Find Full Text PDFRice (N Y)
October 2024
College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
The yield potential of large-panicle rice is often limited by grain-filling barriers caused by the development of inferior spikelets (IS). Photoassimilates, which are the main source of rice grain filling, mainly enter the caryopsis through the dorsal vascular bundle. The distribution of assimilates between superior spikelets (SS) and IS is influenced by auxin-mediated apical dominance; however, the mechanism involved is still unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!