2D lead halide perovskites, which exhibit bandgap tunability and increased chemical stability, have been found to be useful for designing optoelectronic devices. Reducing dimensionality with decreasing number of layers (n = 10-1) also imparts resistance to light-induced ion migration as seen from the halide ion segregation and dark recovery in mixed halide (Br:I = 50:50) perovskite films. The light-induced halide ion segregation efficiency, as determined from difference absorbance spectra, decreases from 20% to <1% as the dimensionality is decreased for 2D perovskite film from n = 10 to 1. The segregation rate constant (k ), which decreases from 5.9 × 10 s (n = 10) to 3.6 × 10 s (n = 1), correlates well with nearly an order of magnitude decrease observed in charge-carrier lifetime (τ = 233 ps for n = 10 vs τ = 27 ps for n = 1). The tightly bound excitons in 2D perovskites make charge separation less probable, which in turn decreases the halide mobility and resulting phase segregation. The importance of controlling the dimensionality of the 2D architecture in suppressing halide ion mobility is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202105585 | DOI Listing |
Nanoscale
January 2025
Department of Chemistry, Maulana Azad National Institute of Technology, Bhopal-462003, India.
Mixing different metal ions at the B site of ABX perovskites offers a promising approach for addressing challenges related to toxicity, stability and performance in optoelectronic applications. One such example is CsPbSnBr which addresses the toxicity issue posed by lead while allowing us to tune optoelectronic properties such as the band gap. In this work, nearly monodisperse CsPbSnBr quantum dots (QDs) were synthesized with variable Pb/Sn compositions, CsPbBr, CsPbSnBr and CsPbSnBr.
View Article and Find Full Text PDFMetal halide perovskites have unique luminescent properties that make them an attractive alternative for high quality light-emitting devices. However, the poor stability of perovskites with many defects and the long cycle time for the preparation of perovskite nanocomposites have hindered their production and application. Here, we prepared the perovskite mesostructures by embedding MAPbBr nanocrystals in the mesopores on the surface of silica nanospheres and mixing the nanospheres with silver nanowires and poly(methyl methacrylate) (PMMA), and further explored their optical properties.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea.
In the search for new ultraviolet (UV) nonlinear optical (NLO) materials, two novel cadmium mixed halide compounds, (NH)CdClF and (NH)CdBrF, are successfully synthesized via hydrothermal methods. These compounds crystallize in the noncentrosymmetric (NCS) space group, R32, and are composed of distorted octahedral [CdXF] (X═Cl or Br) units, which extend into a 3D framework. Remarkably, both compounds demonstrate strong second-harmonic generation (SHG) efficiencies-3.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Materials Science and Engineering and the Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
Lead-halide hybrid perovskites (RNHPbX, X = halide, e.g., Cl, Br, I; R = organic moiety) show promise for next-generation optoelectronic devices due to their simple synthesis routes, strong light absorption, and high photoluminescence quantum yield.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
Addressing the challenges of the efficiency and stability of red perovskite nanocrystals is imperative for the successful deployment of these materials in displays and lighting applications. the structural dynamic changes of red perovskite quantum dots (PQDs) are explored using a flow chemistry system to solve the above hurdles. First, the ultrabright red-emitting PQDs of CsPb(Br,I) are achieved by adjusting ligand distribution (oleic acid and oleyamine) in combination with different flow rates and equivalence ratios.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!