Mosquito Microbiome Diversity Varies Along a Landscape-Scale Moisture Gradient.

Microb Ecol

Pacific Biosciences Research Center, Life Science Building, University of Hawai'i at Mānoa, 1800 East-West Road, Honolulu, Hawaii, 96822, USA.

Published: October 2022

Microorganisms live in close association with metazoan hosts and form symbiotic microbiotas that modulate host biology. Although the function of host-associated microbiomes may change with composition, hosts within a population can exhibit high turnover in microbiome composition among individuals. However, environmental drivers of this variation are inadequately described. Here, we test the hypothesis that this diversity among the microbiomes of Aedes albopictus (a mosquito disease vector) is associated with the local climate and land-use patterns on the high Pacific island of O 'ahu, Hawai 'i. Our principal finding demonstrates that the relative abundance of several bacterial symbionts in the Ae. albopictus microbiome varies in response to a landscape-scale moisture gradient, resulting in the turnover of the mosquito microbiome composition across the landscape. However, we find no evidence that mosquito microbiome diversity is tied to an index of urbanization. This result has implications toward understanding the assembly of host-associated microbiomes, especially during an era of rampant global climate change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11233147PMC
http://dx.doi.org/10.1007/s00248-021-01865-xDOI Listing

Publication Analysis

Top Keywords

mosquito microbiome
12
microbiome diversity
8
landscape-scale moisture
8
moisture gradient
8
host-associated microbiomes
8
microbiome composition
8
mosquito
4
diversity varies
4
varies landscape-scale
4
gradient microorganisms
4

Similar Publications

Aedes albopictus is a widely recognized carrier of various pathogens. Its resilient characteristics enable it to easily spread across diverse climates. The microbiota in the midgut of mosquitoes plays a crucial role in the interactions between the host and pathogens and can either enhance or reduce the ability of the insect to transmit diseases.

View Article and Find Full Text PDF

The microbiome influences critical aspects of mosquito biology and variations in microbial composition can impact the outcomes of laboratory studies. To investigate how biotic and abiotic conditions in an insectary affect the composition of the mosquito microbiome, a single cohort of Aedes aegypti eggs was divided into three batches and transferred to three different climate-controlled insectaries within the Liverpool School of Tropical Medicine. The bacterial microbiome composition was compared as mosquitoes developed, the microbiome of the mosquitoes' food sources was characterised, environmental conditions over time in each insectary were measured, and mosquito development and survival were recorded.

View Article and Find Full Text PDF

The Tick Microbiome: The "Other Bacterial Players" in Tick Biocontrol.

Microorganisms

November 2024

Department of Entomology, College of Agriculture, Life and Environmental Sciences, University of Arizona, Tucson, AZ 85719, USA.

Hard ticks (family Ixodidae) are one of the most predominant arthropod disease vectors worldwide, second only to mosquitoes. In addition to harboring animal and human pathogens, ticks are known to carry a microbial community constituted of non-pathogenic organisms, which includes maternally inherited intracellular endosymbionts and other environmentally acquired extracellular microorganisms. These microbial communities, which include bacteria, viruses, protozoans, and fungi-with often commensal, mutualistic, or parasitic associations with the tick-comprise the tick microbiome, bacteria being the most studied community.

View Article and Find Full Text PDF

The Mosquito Microbiota: A Key Player in Vector Competence and Disease Dynamics.

Pathogens

December 2024

ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France.

Mosquitoes are well-known vectors for a range of pathogens, including parasites, which cause malaria in reptiles, birds, and mammals [...

View Article and Find Full Text PDF

Cell wall components of gut commensal bacteria stimulate peritrophic matrix formation in malaria vector mosquitoes through activation of the IMD pathway.

PLoS Biol

January 2025

State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.

The peritrophic matrix (PM) acts as a physical barrier that influences the vector competence of mosquitoes. We have previously shown that gut microbiota promotes PM formation in Anopheles stephensi, although the underlying mechanisms remain unclear. In this study, we identify that the cell wall components of gut commensal bacteria contribute to PM formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!