Nestedness is an important pattern frequently reported for species assemblages on islands or fragmented systems. However, to date, there are few studies that comprehensively investigated faunal nestedness and underlying processes in urbanized landscapes. In this study, we examined the nestedness of bird assemblages and its underlying causal mechanisms in 37 urban parks in Nanjing, China. We used the line-transect method to survey birds from April 2019 to January 2020. We used the Weighted Nestedness metric based on Overlap and Decreasing Fill (WNODF) to estimate the nestedness of bird assemblages. We applied spearman partial correlation test to examine the relationships between nestedness ranks of sites and park characteristics (area, isolation, anthropogenic noise, number of habitat types, and building index), as well as between nestedness ranks of species and their ecological traits (body size, geographic range size, clutch size, minimum area requirement, dispersal ratio, and habitat specificity). We found that bird assemblages in urban parks were significantly nested. Park area, habitat diversity, building index, habitat specificity, and minimum area requirement of birds were significantly correlated with nestedness. Therefore, the nestedness of bird assemblages was caused by selective extinction, habitat nestedness, and urbanization. However, the nestedness of bird assemblages did not result from passive sampling, selective colonization, or human disturbance. Overall, to maximize the number of species preserved in our system, conservation priority should be given to parks with large area, rich habitat diversity, and less building index. From a species perspective, we should focus on species with large area requirement and high habitat specificity for their effective conservation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8489010 | PMC |
http://dx.doi.org/10.1093/cz/zoaa069 | DOI Listing |
Ecol Appl
January 2025
Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Fire shapes biodiversity in many forested ecosystems, but historical management practices and anthropogenic climate change have led to larger, more severe fires that threaten many animal species where such disturbances do not occur naturally. As predators, owls can play important ecological roles in biological communities, but how changing fire regimes affect individual species and species assemblages is largely unknown. Here, we examined the impact of fire severity, history, and configuration over the past 35 years on an assemblage of six forest owl species in the Sierra Nevada, California, using ecosystem-scale passive acoustic monitoring.
View Article and Find Full Text PDFIntegr Zool
January 2025
Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China.
The burrow microhabitats created by burrowing mammals, as a hotspot for biodiversity distribution in ecosystems, provide multiple critical resources for many other sympatric species. However, the cascading effects of burrow resources on sympatric animal community assemblages and interspecific interactions are largely unknown. During 2020-2023, we monitored 184 Chinese pangolin (Manis pentadactyla) burrows using camera traps to reveal the burrow utilization patterns of commensal species.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
HUN-REN Veterinary Medical Research Institute, Tábornok u. 2., H-1143 Budapest, Hungary.
Avian pox is a globally spread viral disease affecting a wide spectrum of wild and domesticated bird species. The disease is caused by a diverse group of large DNA viruses, namely, avipoxviruses (genus , family ). In this study, gross pathological examination and histopathological examination of skin lesions and several organs suggested acute poxvirus infection of a Eurasian crane (, Linnaeus, 1758).
View Article and Find Full Text PDFEcol Evol
January 2025
Department of Environmental Systems Science ETH Zürich Switzerland.
Scavenging is a widespread feeding strategy involving a diversity of taxa from different trophic levels, from apex predators to obligate scavengers. Scavenger species play a crucial role in ecosystem functioning by removing carcasses, recycling nutrients and preventing disease spread. Understanding the trophic roles of scavenger species can help identify specialized species with unique roles and species that may be more vulnerable to ecological changes.
View Article and Find Full Text PDFMol Ecol
January 2025
Department of Anatomy, University of Otago, Dunedin, New Zealand.
In a changing environment, vacant niches can be filled either by adaptation of local taxa or range-expanding invading species. The relative tempo of these patterns is of key interest in the modern age of climate change. Aotearoa New Zealand has been a hotspot of biogeographic research for decades due to its long-term isolation and dramatic geological history.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!