This paper provides an in-depth discussion and analysis of the estimation of nuclear medicine exposure measurements using computerized intelligent processing. The focus is on the study of energy extraction algorithms to obtain a high energy resolution with the lowest possible ADC sampling rate and thus reduce the amount of data. This paper focuses on the direct pulse peak extraction algorithm, polynomial curve fitting algorithm, double exponential function curve fitting algorithm, and pulse area calculation algorithm. The detector output waveforms are obtained with an oscilloscope, and the analysis module is designed in MATLAB. Based on these algorithms, the data obtained from six different lower sampling rates are analyzed and compared with the results of the high sampling rate direct pulse peak extraction algorithm and the pulse area calculation algorithm, respectively. The correctness of the compartment model was checked, and the results were found to be realistic and reliable, which can be used for the analysis of internal exposure data in radiation occupational health management, estimation of internal exposure dose for nuclear emergency groups, and estimation of accidental internal exposure dose. The results of the compartment model of the respiratory tract and the compartment model of the digestive tract can be used to calculate the distribution and retention patterns of radionuclides and their compounds in the body, which can be used to assess the damage of radionuclide internal contamination and guide the implementation of medical treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8490043PMC
http://dx.doi.org/10.1155/2021/4102183DOI Listing

Publication Analysis

Top Keywords

compartment model
12
internal exposure
12
estimation nuclear
8
nuclear medicine
8
medicine exposure
8
sampling rate
8
direct pulse
8
pulse peak
8
peak extraction
8
extraction algorithm
8

Similar Publications

Study Question: Does a human fallopian tube (HFT) organoid model offer a favourable apical environment for human sperm survival and motility?

Summary Answer: After differentiation, the apical compartment of a new HFT organoid model provides a favourable environment for sperm motility, which is better than commercial media.

What Is Known Already: HFTs are the site of major events that are crucial for achieving an ongoing pregnancy, such as gamete survival and competence, fertilization steps, and preimplantation embryo development. In order to better understand the tubal physiology and tubal factors involved in these reproductive functions, and to improve still suboptimal in vitro conditions for gamete preparation and embryo culture during IVF, we sought to develop an HFT organoid model from isolated adult stem cells to allow spermatozoa co-culture in the apical compartment.

View Article and Find Full Text PDF

Computational Generation of Long-range Axonal Morphologies.

Neuroinformatics

January 2025

Blue Brain Project, EPFL, Chemin des mines 9, 1202, Geneva, Switzerland.

Long-range axons are fundamental to brain connectivity and functional organization, enabling communication between different brain regions. Recent advances in experimental techniques have yielded a substantial number of whole-brain axonal reconstructions. While previous computational generative models of neurons have predominantly focused on dendrites, generating realistic axonal morphologies is more challenging due to their distinct targeting.

View Article and Find Full Text PDF

Inorganic Mercury Pharmacokinetics in Man: A Hybrid Model.

Xenobiotica

January 2025

Department of Pharmaceutical Sciences, School of Pharmacy, Westcoast University, 590 North Vermont Avenue, Los Angeles, CA 90004.

A four-compartment model is presented that simulates inorganic mercury [Hg(II)] pharmacokinetics in blood, tissue, and excreta over a 70 day period. Simulations are validated against data collected from five human subjects, and previously analyzed (Farris, F.F.

View Article and Find Full Text PDF

Certepetide (aka LSTA1 and CEND-1) is a novel cyclic tumor-targeting internalizing arginyl glycylaspartic acid peptide being developed to treat solid tumors. Certepetide is designed to overcome existing challenges in treating solid tumors by delivering co-administered anticancer drugs into the tumor while selectively depleting immunosuppressive T cells, enhancing cytotoxic T cells in the tumor microenvironment, and inhibiting the metastatic cascade. A population pharmacokinetic (PK) analysis was conducted to characterize the concentration-time profile of patients with metastatic exocrine pancreatic cancer receiving certepetide in combination with nab-paclitaxel and gemcitabine, and to investigate the effects of clinically relevant covariates on PK parameters.

View Article and Find Full Text PDF

Meta-Analysis of the Input and Disposition of Various Dosage Forms of Methylprednisolone in Healthy Subjects Utilizing a Physiologically Based Pharmacokinetic Model.

AAPS J

January 2025

Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, 160 Hayes Rd, Buffalo, New York, 14214, USA.

The study quantitatively analyzes and compares the pharmacokinetics (PK) of methylprednisolone (MPL) in humans upon administration of various dosage forms. The PK parameters and profiles of MPL in healthy subjects were collected from 22 literature sources. A minimal physiologically based pharmacokinetic (mPBPK) model consisting of blood and two tissue (lumped liver and kidney, remainder) compartments with nonlinear tissue partitioning was applied to describe MPL disposition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!