Many species of the gastropod genus have been named from northeastern Asia but scanty descriptions based predominantly on shells make it difficult to determine which are valid. This, plus the sporadic anatomical and genetic information available for many of these species has led to what may be described as an un-integrated taxonomy. In this situation, it is generally preferable to postpone dissection of rare and unusual specimens until relevant diagnostic characters can be established in broader studies. Micro-CT scanning and DNA sequencing were used to examine such a specimen collected recently from deep waters off northeastern Taiwan. Micro-CT examination of the morphology of the internal shell and gizzard plates suggested that, among named species, the sequenced specimen is most similar to . It cannot, however, be definitively referred to as that species lacks adequate anatomical description or known DNA sequences. Phylogenetic analyses of newly collected DNA sequences show the specimen to be most closely related to, but distinct from the northern Atlantic Ocean and Mediterranean species, . The sequences also confirm genetically that five or more species of occur in northeast Asia, including at least three subject to considerable taxonomic uncertainty.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8463522PMC
http://dx.doi.org/10.3897/zookeys.1060.28809DOI Listing

Publication Analysis

Top Keywords

dna sequences
12
un-integrated taxonomy
8
species
6
rare specimen
4
specimen identification
4
identification un-integrated
4
taxonomy implications
4
dna
4
implications dna
4
sequences
4

Similar Publications

The Circumsporozoite Protein (PfCSP) has been used in developing the RTS,S, and R21 malaria vaccines. However, genetic polymorphisms within compromise the effectiveness of the vaccine. Thus, it is essential to continuously assess the genetic diversity of , especially when deploying it across different geographical regions.

View Article and Find Full Text PDF

Introduction: Schistosomiasis (Bilharzia), a neglected tropical disease caused by parasites, afflicts over 240 million people globally, disproportionately impacting Sub-Saharan Africa. Current diagnostic tests, despite their utility, suffer from limitations like low sensitivity. Polymerase chain reaction (PCR) and quantitative real-time PCR (qPCR) remain the most common and sensitive nucleic acid amplification tests.

View Article and Find Full Text PDF

Optimized circular RNA vaccines for superior cancer immunotherapy.

Theranostics

January 2025

Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.

Circular RNA (circRNA) has gained attention as a promising platform for mRNA vaccines due to its stability, sustained protein expression, and intrinsic immunostimulatory properties. This study aimed to design and optimize a circRNA cancer vaccine platform by screening for efficient internal ribosome entry sites (IRES) and enhancing circRNA translation efficiency for improved cancer immunotherapy. We screened 29 IRES elements to identify the most efficient one for immune cell translation, ultimately discovering the A (EV-A) IRES.

View Article and Find Full Text PDF

Building a reliable 16S mini-barcode library of wild bees from Occitania, south-west of France.

Biodivers Data J

January 2025

Dynafor, INRAE, INP, ENSAT, 31326, Castanet Tolosan, France Dynafor, INRAE, INP, ENSAT, 31326 Castanet Tolosan France.

Background: DNA barcoding and metabarcoding are now powerful tools for studying biodiversity and especially the accurate identification of large sample collections belonging to diverse taxonomic groups. Their success depends largely on the taxonomic resolution of the DNA sequences used as barcodes and on the reliability of the reference databases. For wild bees, the barcode sequences coverage is consistently growing in volume, but some incorrect species annotations need to be cared for.

View Article and Find Full Text PDF

A rare haplotype of the GJD3 gene segregating in familial Meniere's disease interferes with connexin assembly.

Genome Med

January 2025

Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitario, Ibs.GRANADA, Universidad de Granada, 18071, Granada, Spain.

Background: Familial Meniere's disease (FMD) is a rare polygenic disorder of the inner ear. Mutations in the connexin gene family, which encodes gap junction proteins, can also cause hearing loss, but their role in FMD is largely unknown.

Methods: We retrieved exome sequencing data from 94 individuals in 70 Meniere's disease (MD) families.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!