Effects of Berberine on the Chondrogenic Differentiation of Embryonic Limb Skeletal Progenitors.

J Inflamm Res

Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, 39011, Spain.

Published: September 2021

Introduction: Berberine (BBR) is an isoquinoline plant alkaloid with demonstrated anti-inflammatory, anti-tumor and immunosuppressive pharmacological properties that functions via multiple signaling pathways and epigenetic modulators. Numerous studies have proposed BBR as a promising therapeutic agent for joint cartilage degeneration, and other connective tissue diseases.

Purpose And Methods: This work aimed to evaluate the effects of BBR on the growth and differentiation of embryonic skeletal progenitors using the limb mesoderm micromass culture assay.

Results: Our findings show that at difference of its apoptotic influence on a variety of tumor tissues, cell death was not induced in skeletal progenitors by the addition of 12 or 25 µM BBR concentration to the culture medium. Morphological and transcriptional analysis revealed dual and opposite effects of BBR treatments on chondrogenesis depending on the stage of differentiation of the cultured progenitors. At early stage of culture, BBR was a potent chondrogenic inhibitor, while chondrogenesis was intensified in treatments at advanced stages of culture. The chondrogenic promoting effect was accompanied by a moderate upregulation of gene markers of prehypertrophic cartilage, including , alkaline phosphatase , and Indian Hedgehog . We further observed a positive transcriptional influence of BBR in the expression of DNA methyltransferase genes, and , suggesting a potential involvement of epigenetic factors in its effects.

Conclusion: Our study uncovers a new pharmacological influence of BBR in cartilage differentiation that must be taken into account in designing clinical protocols for its employment in the treatment of cartilage degenerative diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8488050PMC
http://dx.doi.org/10.2147/JIR.S324292DOI Listing

Publication Analysis

Top Keywords

skeletal progenitors
12
differentiation embryonic
8
bbr
8
effects bbr
8
influence bbr
8
effects berberine
4
berberine chondrogenic
4
differentiation
4
chondrogenic differentiation
4
embryonic limb
4

Similar Publications

Loss of KAT6B causes premature ossification and promotes osteoblast differentiation during development.

Dev Biol

January 2025

The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia. Electronic address:

The MYST family histone acetyltransferase gene, KAT6B (MYST4, MORF, QKF) is mutated in two distinct human congenital disorders characterised by intellectual disability, facial dysmorphogenesis and skeletal abnormalities; Say-Barber-Biesecker-Young-Simpson variant of Ohdo syndrome and Genitopatellar syndrome. Despite its requirement in normal skeletal development, the cellular and transcriptional effects of KAT6B in skeletogenesis have not been thoroughly studied. Here, we show that germline deletion of the Kat6b gene in mice causes premature ossification in vivo, resulting in shortened craniofacial elements and increased bone density, as well as shortened tibias with an expanded pre-hypertrophic layer, as compared to wild type controls.

View Article and Find Full Text PDF

Skeletal muscle plays a significant role in both local and systemic energy metabolism. The current investigation aims to explore the role of the Bambi gene in skeletal muscle, focusing on its implications for muscle hypertrophy and systemic metabolism. We hypothesize that skeletal muscle-specific deletion of Bambi induces muscle hypertrophy, improves metabolic performance, and activates thermogenic adipocytes via the reprogramming of progenitor of iWAT, offering potential therapeutic strategies for metabolic syndromes.

View Article and Find Full Text PDF

Histological and Molecular Manifestations of Cleft Myopathy.

Cleft Palate Craniofac J

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Objective: Apart from rupture and displacement of muscle fibers, structural defects exist in cleft muscles but have not been adequately investigated. This study aimed to examine the histological and molecular features of the cleft muscles.

Design: Orbicularis oris (OO) and tensor fasciae latae (TFL) muscle samples were obtained from patients with cleft lip and alveolar.

View Article and Find Full Text PDF

Skeletal muscle regeneration in adults is predominantly driven by satellite cells. Loss of satellite cell pool and function leads to skeletal muscle wasting in many conditions and disease states. Here, we demonstrate that the levels of fibroblast growth factor-inducible 14 (Fn14) are increased in satellite cells after muscle injury.

View Article and Find Full Text PDF

Cartilaginous microtissues exhibit extreme resilience under compression with size-dependent mechanical properties.

Biomaterials

January 2025

Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium; Skeletal Biology and Engineering Research, KU Leuven, ON1 Herestraat 49, PB 813, 3000, Leuven, Belgium. Electronic address:

Self-assembled cartilaginous microtissues provide a promising means of repairing challenging skeletal defects and connective tissues. However, despite their considerable promise in tissue engineering, the mechanical response of these engineered microtissues is not well understood. Here we examine the mechanical and viscoelastic response of progenitor cell aggregates formed from human primary periosteal cells and the resulting cartilaginous microtissues under large deformations as might be encountered in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!