New Zealand was among the last habitable places on earth to be colonized by humans. Charcoal records indicate that wildfires were rare prior to colonization and widespread following the 13th- to 14th-century Māori settlement, but the precise timing and magnitude of associated biomass-burning emissions are unknown, as are effects on light-absorbing black carbon aerosol concentrations over the pristine Southern Ocean and Antarctica. Here we used an array of well-dated Antarctic ice-core records to show that while black carbon deposition rates were stable over continental Antarctica during the past two millennia, they were approximately threefold higher over the northern Antarctic Peninsula during the past 700 years. Aerosol modelling demonstrates that the observed deposition could result only from increased emissions poleward of 40° S-implicating fires in Tasmania, New Zealand and Patagonia-but only New Zealand palaeofire records indicate coincident increases. Rapid deposition increases started in 1297 (±30 s.d.) in the northern Antarctic Peninsula, consistent with the late 13th-century Māori settlement and New Zealand black carbon emissions of 36 (±21 2 s.d.) Gg y during peak deposition in the 16th century. While charcoal and pollen records suggest earlier, climate-modulated burning in Tasmania and southern Patagonia, deposition in Antarctica shows that black carbon emissions from burning in New Zealand dwarfed other preindustrial emissions in these regions during the past 2,000 years, providing clear evidence of large-scale environmental effects associated with early human activities across the remote Southern Hemisphere.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-021-03858-9DOI Listing

Publication Analysis

Top Keywords

black carbon
20
13th-century māori
8
records indicate
8
māori settlement
8
northern antarctic
8
antarctic peninsula
8
carbon emissions
8
zealand
6
carbon
5
emissions
5

Similar Publications

Enhanced oxidative potential and SO heterogeneous oxidation on candle soot after photochemical aging: Influencing mechanisms of different irradiation wavelengths.

Environ Pollut

December 2024

School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, People's Republic of China; Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Jiangsu 213164, China. Electronic address:

Photochemistry plays a significant role in the atmospheric aging processes of soot. However, the physicochemical properties and changes in environmental and health effects of soot particles from sacrificial sources after photochemical aging remain unclear. The reaction mechanisms of soot under different irradiation wavelengths require further investigation.

View Article and Find Full Text PDF

Separation of valuable materials from spent lithium-ion battery based on granulation regulation.

Waste Manag

December 2024

National Engineering Research Center of Green Recycling for Strategic Metal Resources, Chemistry & Chemical Engineering Data Center, Chinese Academy of Sciences, Institute of Process Engineering, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100190, China. Electronic address:

Recycling of spent lithium-ion batteries has attracted worldwide attention to ensure sustainability of electric vehicle industry. Pretreatment as an essential step for recycling of spent LIBs is critical to ensure the recovery efficiency and quality of black mass which is used for further materials regeneration. Usually, high temperature pyrolysis, at around 600 °C is required during the pretreatment to achieve effective separation of the black mass that is binding on aluminium foils with polyvinylidene fluoride binder.

View Article and Find Full Text PDF

The potential threat of soil microplastics (MPs, particle sizes smaller than 5 mm) to the agricultural environment and food security production has become a hot issue, but there are few systematic studies on the characteristics and influencing factors of MP pollution in agricultural soil in China. Based on the data of soil MPs and related environmental factors (temperature, precipitation, soil pH, and organic carbon) and social and economic factors (permanent population, gross regional product per capita, gross industrial product per capita, and cultivated land area per capita) extracted from 6 694 samples from 85 published studies from 2020 to 2023, meta-analysis was performed. The characteristics of MPs pollution in agricultural soil and the key factors affecting the accumulation of MPs in soil in six administrative regions of China were analyzed.

View Article and Find Full Text PDF

Gestational exposure to carbon black nanoparticles triggered fetal growth restriction in mice: The mediation of inactivating autophagy-lysosomal degradation system in placental ferroptosis.

Sci Total Environ

December 2024

State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen 361003, China. Electronic address:

Carbon black nanoparticles (CBNPs) are ubiquitous in our daily ambient environment, either resulting from tobacco combustion or constituting the core of PM. Despite the potential risk of trafficking CBNPs to the fetus, the underlying toxicity of nano-sized carbon black particles in the placenta remains unambiguous. Pregnant C57BL/6 mice received intratracheal instillation of 30 nm or 120 nm CBNPs.

View Article and Find Full Text PDF

Elucidating the impact of mulching film on organic carbon mineralization from the perspective of aggregate level.

Sci Total Environ

December 2024

Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China. Electronic address:

Plastic films mulching, a management strategy designed to boost agricultural productivity, significantly impacts soil fertility and the turnover of soil organic carbon (SOC). Aggregates in the soil play a crucial role in this SOC cycling. Yet, the effect of mulching on the changes in organic carbon components and the mineralization at the aggregate scale is still not well understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!