Multiplications, mutations and dysregulation of the alpha synuclein gene (SNCA) are associated with the demise of dopaminergic neurons and are considered to play important roles in the pathogenesis of familial and sporadic forms of Parkinson's disease. Regulation of SNCA expression might thus be an appropriate target for treatment. We aimed to identify specific modulators of SNCA transcription, generated CRISPR/Cas9 modified SNCA-GFP-luciferase (LUC) genomic fusion- and control cell lines and screened a library of 1649 bioactive compounds, including the FDA approved drugs. We found no inhibitors but three selective activators which increased SNCA mRNA and protein levels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8494889 | PMC |
http://dx.doi.org/10.1038/s41598-021-98841-9 | DOI Listing |
Alzheimers Dement
December 2024
Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, North Holland, Netherlands.
The lack of an in-vivo pathology marker for synuclein pathology has been a long standing challenge for dementia for Lewy bodies (DLB) research. This issue is critically important for phase II trials, which are often small, requiring the precise measurement of the biological effects, whether disease modifying or symptomatic. Recent advances have enabled the determination of alpha-synuclein pathology status with CSF measurements, using aggregation assays [RT-QUIC].
View Article and Find Full Text PDFAlzheimers Dement
December 2024
MRC Protein Phosphorylation and Ubiquitylation Unit, Dundee, Scotland, United Kingdom.
Background: Accumulation of misfolded a-synuclein protein in intracellular inclusion bodies of dopaminergic neurons underlies the pathogenesis of synucleinopathies, which include Parkinson's Disease (PD), Dementia with Lewy Bodies (DLB) and Multiple System Atrophy (MSA). Therefore, clearance of misfolded α-synuclein from dopaminergic neurons could in principle offer a an approach for modifying synucleinopathies, which currently remain untreatable.
Method: In this study, we employ the Affinity-directed PROtein Missile (AdPROM) system consisting of the substrate receptor of the CUL2-E3 ligase complex VHL and a nanobody selectively recognising the human α-synuclein protein RESULT: We demonstrate targeted degradation of endogenous α-synuclein from human cell lines with exquisite selectivity.
Alzheimers Dement
December 2024
Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.
Background: Some types of cancer have been associated with reduced risk of clinical dementia diagnosis. Whether cancer history may be associated with neuropathological features of neurodegeneration or cerebrovascular disease is not well understood. We investigated the relation between cancer diagnosis and brain pathology in a sample of community-based research volunteers enrolled in an Alzheimer's Disease Research Center (ADRC) cohort.
View Article and Find Full Text PDFBackground: Accumulating evidence suggests that the presynaptic protein α-synuclein (α-syn), is involved in the pathophysiology of AD and elevated in the cerebrospinal fluid (CSF). The role of Natural Killer (NK) cells of the innate immune system in AD has largely been overlooked. In a murine model, depletion of NK cells augmented the accumulation of pathological α-syn.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Stanford University School of Medicine, Stanford, CA, USA.
Recent advances in biomarkers, enabling the in vivo detection of pathological aggregates of alpha-synuclein (asyn), allow a shift from a clinical to a biological definition of Parkinson's disease (PD) and dementia with Lewy bodies (DLB). The newly proposed "Neuronal alpha-Synuclein Disease (NSD)" is defined by the presence of pathologic neuronal (n-asyn) species detected in vivo (S), irrespective of any specific clinical syndrome. Additional biological anchors include dopaminergic neuronal dysfunction (D).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!