Context: Volleyball players have shown to be at an increased risk of developing scapular dyskinesis. The kinetic chain exercise approach has gained a lot of attention because of its claims to provide an improved motor control and scapular kinematics. A form of cross exercise, known as mirror therapy, may enhance the effects of a kinetic chain exercise approach in throwing performance.
Objective: To examine the effects of mirror cross exercise (MCE), based on a kinetic chain exercise approach in the throwing performance of volleyball athletes with scapular dyskinesis.
Design: Randomized controlled trial.
Setting: Biomechanics laboratory.
Methods: 39 volleyball players with scapular dyskinesis were randomly allocated into 3 groups. The first group completed a 6-week kinetic chain approach (KCA group), the second group completed a kinetic chain exercise approach program in addition to MCE group, and the control group followed only their regular training program. Before and after delivering both interventions, throwing accuracy, speed, and force were determined while measuring the ground reaction forces of the drive leg during throwing. Two-way mixed analysis of variance investigated the effects of intervention and time and their interaction.
Results: The results showed intervention × time statistically significant interactions for throwing accuracy, speed, and force for the MCE and the KCA groups. Over the 6-week training period, the MCE and the KCA groups showed significant improvements in throwing accuracy (P < .01) and speed (P < .01), while the ground reaction forces did not change (P > .05). Throwing force increased significantly in the MCE group (P = .01). Between-group comparison showed statistically significant improvements in the throwing accuracy for the MCE and KCA groups against the control group (P < .01) at posttesting. The MCE demonstrated superior results over the KCA in the aforementioned measures.
Conclusions: This study suggests that the addition of MCE in a KCA program enhances energy transfer throughout the distal and proximal segments, thus improving kinetic chain recruitment and potentially preventing shoulder pathology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1123/jsr.2021-0103 | DOI Listing |
Polymers (Basel)
January 2025
Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland.
Alginate hydrogels have gathered significant attention in biomedical engineering due to their remarkable biocompatibility, biodegradability, and ability to encapsulate cells and bioactive molecules, but much less has been reported on the kinetics of gelation. Scarce experimental data are available on cross-linked alginates (AL) with bioactive components. The present study addressed a novel method for defining the crosslinking mechanism using rheological measurements for aqueous mixtures of AL and calcium chloride (CaCl) with the presence of hydroxyapatite (HAp) as filler particles.
View Article and Find Full Text PDFBiomolecules
January 2025
Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
The Src homology 2 domain-containing inositol 5-phosphatase 1 (SHIP1) is a multidomain protein consisting of two protein-protein interaction domains, the Src homology 2 (SH2) domain, and the proline-rich region (PRR), as well as three phosphoinositide-binding domains, the pleckstrin homology-like (PHL) domain, the 5-phosphatase (5PPase) domain, and the C2 domain. SHIP1 is commonly known for its involvement in the regulation of the PI3K/AKT signaling pathway by dephosphorylation of phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P) at the D5 position of the inositol ring. However, the functional role of each domain of SHIP1 for the regulation of its enzymatic activity is not well understood.
View Article and Find Full Text PDFBiomolecules
January 2025
Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya Street, Novosibirsk 630090, Russia.
In the present work, we performed calculations of the kinetic isotope effect (KIE) on H/D, N/N, O/O, and C/C isotopic substitution in the dissociation of beta-sheet polyglycine dimers of different lengths into two monomer chains. This dissociation reaction, proceeding via breaking of the interchain hydrogen bonds (H-bonds), is considered to be a model of unfolding of the secondary structure of proteins. The calculated strengthening of the interchain hydrogen bonds N-H⋯O=C due to heavy isotope substitution decreases in the row H/D >> N/N > O/O > C/C.
View Article and Find Full Text PDFEur J Pharm Biopharm
January 2025
Department of Biophysics, Faculty of Science, P. J. Safarik University in Kosice, Jesenna 5 041 54 Kosice, Slovakia; SAFTRA Photonics sro., Moldavska cesta 51 04011 Kosice, Slovakia.
Due to the straightforward single-step synthesis, amphiphilic gradient copoly(2-oxazoline)s are becoming more popular alternative to their block analogue for the development of next-generation drug delivery systems. Here, we investigated the influence of polymer architecture on the physiochemical and biological assessment of nanoformulations formed by the self-assembly of gradient copoly(2-oxazoline)s. Two different architectures were synthesized: hydrophilic-grad-hydrophobic (mono-gradient) and hydrophobic-grad-hydrophilic-grad-hydrophobic (di-gradient) which contained a hydrophilic monomer, 2-ethyl-2-oxazoline (EtOx) and a hydrophobic monomer, 2-phenyl-2-oxazoline (PhOx).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, Soft Materials Research Laboratory, 34469, Maslak, Istanbul, Turkey. Electronic address:
Controllable macromolecular architecture formation via polysaccharide integrated ternary copolymerization was explored in the design of amino-functionalized n-alkyl methacrylate ester-based biohybrids. Ternary poly(dimethylaminoethyl methacrylate-co-glycidyl methacrylate-co-hydroxypropyl methacrylate)/sodium-alginate, PDGH/ALG, hybrids were designed using anionic polysaccharide through in-situ radical polymerization. An insight into the effect of ALG on physicochemical structure of ternary hybrids, particularly the interactions between polymeric chains, was created.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!