Purpose: Hypoxia is a common characteristic of many tumor microenvironments, and it has been shown to promote suppression of antitumor immunity. Despite strong biological rationale, longitudinal correlation of hypoxia and response to immunotherapy has not been investigated.
Experimental Design: In this study, we probed the tumor and its surrounding microenvironment with F-FMISO PET imaging to noninvasively quantify tumor hypoxia prior to and during PD-1 and CTLA-4 checkpoint blockade in preclinical models of breast and colon cancer.
Results: Longitudinal imaging identified hypoxia as an early predictive biomarker of therapeutic response (prior to anatomic changes in tumor volume) with a decreasing standard uptake value (SUV) ratio in tumors that effectively respond to therapy. PET signal correlated with markers of tumor immune response including cytokines (IFNγ, GZMB, and TNF), damage-associated molecular pattern receptors (TLR2/4), and immune cell populations (macrophages, dendritic cells, and cytotoxic T cells). Responding tumors were marked by increased inflammation that were spatially distinct from hypoxic regions, providing a mechanistic understanding of the immune signaling pathways activated. To exploit image-guided combination therapy, hypoxia signal from PET imaging was used to guide the addition of a hypoxia targeted treatment to nonresponsive tumors, which ultimately provided therapeutic synergy and rescued response as determined by longitudinal changes in tumor volume.
Conclusions: The results generated from this work provide an immediately translatable paradigm for measuring and targeting hypoxia to increase response to immune checkpoint therapy and using hypoxia imaging to guide combinatory therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8776604 | PMC |
http://dx.doi.org/10.1158/1078-0432.CCR-21-2394 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!