Ovarian cancer is the deadliest gynecologic malignancy. Multi-omics techniques have provided a platform for improved predictive modeling of therapy response and patient outcomes. While high-grade serous carcinoma (HGSOC) tumors are immunogenic and numerous studies have defined positive correlation to immune cell infiltration, immunotherapies in clinical trials have exhibited low efficacy rates. There is a significant need to better comprehend the role and composition of immune cells in mediating ovarian cancer therapeutic response and progression. We performed multiplex IHC with an HGSOC tissue microarray ( = 127) to characterize the immune cell composition within tumors. After analyzing the composition and spatial context of T cells (CD4/CD8), macrophages (CD68), and B cells (CD19) within the tumor, we found that increased B-cell and CD4 T-cell presence correlated with overall survival. More importantly, we observed that the proximity between tumor-associated macrophages and B cells or CD4 T cells significantly correlated with overall survival. IMPLICATIONS: The results highlight the antitumor role of B cells and CD4 T cells, and that the spatial interactions between immune cell types are a novel predictor of therapeutic response and patient outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8642308PMC
http://dx.doi.org/10.1158/1541-7786.MCR-21-0411DOI Listing

Publication Analysis

Top Keywords

ovarian cancer
12
immune cell
12
spatial context
8
cells
8
immune cells
8
response patient
8
patient outcomes
8
therapeutic response
8
correlated survival
8
cells cd4
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!