We report the development of deep decomposition and deconvolution microscopy (3DM), a computational microscopy method for the volumetric imaging of neural activity. 3DM overcomes the major challenge of deconvolution microscopy, the ill-posed inverse problem. We take advantage of the temporal sparsity of neural activity to reformulate and solve the inverse problem using two neural networks which perform sparse decomposition and deconvolution. We demonstrate the capability of 3DM via in vivo imaging of the neural activity of a whole larval zebrafish brain with a field of view of 1040 µm × 400 µm × 235 µm and with estimated lateral and axial resolutions of 1.7 µm and 5.4 µm, respectively, at imaging rates of up to 4.2 volumes per second.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.439619 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!