Degradation of underwater images severely limits people to exploring and understanding underwater world, which has become a fundamental but vital issue needing to be addressed in underwater optics. In this paper, we develop an effective solution for underwater image enhancement. We first employ an adaptive-adjusted artificial multi-exposure fusion (A-AMEF) and a parameter adaptive-adjusted local color correction (PAL-CC) to generate a contrast-enhanced version and a color-corrected version from the input respectively. Then we put the contrast enhanced version into the famous guided filter to generate a smooth base-layer and a detail-information containing detail-layer. After that, we utilize the color channel transfer operation to transfer color information from the color-corrected version to the base-layer. Finally, the color-corrected base-layer and the detail-layer are added together simply to reconstruct the final enhanced output. Enhanced results obtained from the proposed solution performs better in visual quality, than those dehazed by some current techniques through our comprehensive validation both in quantitative and qualitative evaluations. In addition, this solution can be also utilized for dehazing fogged images or improving accuracy of other optical applications such as image segmentation and local feature points matching.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.432756DOI Listing

Publication Analysis

Top Keywords

effective solution
8
solution underwater
8
underwater image
8
image enhancement
8
color-corrected version
8
underwater
5
enhancement degradation
4
degradation underwater
4
underwater images
4
images severely
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!