Strong coupling between the resonant modes can give rise to many resonant states, enabling the manipulation of light-matter interactions with more flexibility. Here, we theoretically propose a coupled resonant system where an anisotropic borophene localized plasmonic (BLP) and Bloch surface wave (BSW) can be simultaneously excited. This allows us to manipulate the spectral response of the strong BLP-BSW coupling with exceptional flexibility in the near infrared region. Specifically, the strong longitudinal BLP-BSW coupling occurs when the system is driven into the strong coupling regime, which produces two hybrid modes with a large Rabi splitting up to 124 meV for borophene along both x- and y-directions. A coupled oscillator model is employed to quantitatively describe the observed BSW-BLP coupling by calculating the dispersion of the hybrid modes, which shows excellent agreement with the simulation results. Furthermore, benefited from the angle-dependent BSW mode, the BSW-BLP coupling can be flexibly tuned by actively adjusting the incident angle. Such active tunable BLP-SBW coupling with extreme flexibility offered by this simple layered system makes it promising for the development of diverse borophene-based active photonic and optoelectronic devices in the near infrared region.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.432844 | DOI Listing |
Foods
December 2024
Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma de Mallorca, Spain.
Food neophobia and pickiness are the resistance or refusal to eat and/or avoid trying new foods due to a strong reaction of fear towards the food or an entire group of foods. This systematic review aims to assess evidence on the risk factors and effects of food neophobia and picky eating in children and adolescents, giving elements to avoid the lack of some foods that can cause nutritional deficiencies, leading to future pathologies when they are adults. A systematic literature search was performed in Medlars Online International Literature (MEDLINE) via Pubmed and EBSCOhost, LILACS and IBECS via Virtual Health Library (VHL), Scopus, and Google Scholar.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Laboratory of Nanotechnology, Materials and Environment, Department of Chemistry, Faculty of Science, University Mohammed V, Rabat 10106, Morocco.
This study aimed to investigate the chemical composition and bioactivities of essential oils (EOs) from five Moroccan thyme species: subsp. , , subsp. , and .
View Article and Find Full Text PDFMolecules
December 2024
Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.
The serine/threonine kinase CK2 (formerly known as casein kinase II) plays a crucial role in various CNS disorders and is highly expressed in various types of cancer. Therefore, inhibiting this key kinase could be promising for the treatment of these diseases. The CK2 holoenzyme is formed by the recruitment of two catalytically active CK2α and/or CK2α' subunits by a regulatory CK2β dimer.
View Article and Find Full Text PDFChem Asian J
January 2025
Huazhong University of Science and Technology, School of Chemisry & Chemical Engineering, 1037 Luoyu Road, 430074, Wuhan, CHINA.
Using a direct knitting strategy, we successfully prepared a novel heterogeneous catalyst consisting of pyridine-bridged bis(imidazolium-2-ylidene) palladium complexes (CNC-Pd) embedded in a knitted network polymer. The resulting catalysts (HCP-CNC-Pd-d) exhibited high specific surface areas of 982 m2 g-1 with microporous and mesoporous structures. The large surface area enhances contact between the substrate and the catalytic center, while the strong chelation between CNC and the metal ion ensures the catalyst's durability.
View Article and Find Full Text PDFISA Trans
January 2025
School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China.
Improving the flexible and deep peak shaving capability of supercritical (SC) unit under full operating conditions to adapt a larger-scale renewable energy integrated into the power grid is the main choice of novel power system. However, it is particularly challenging to establish an accurate SC unit model under large-scale variable loads and deep peak shaving. To this end, a data-driven modeling strategy combining Transformer-Extra Long (Transformer-XL) and quantum chaotic nutcracker optimization algorithm is proposed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!