We present a numerical calculation with iterative algorithm method for accurately measuring laser linewidth. In this new method, the self-heterodyne spectrum of long delay fiber is calculated as the initial value, and the short delay self-heterodyne spectrum is demodulated with iterative algorithm to realize the accurate measurement of laser linewidth. The method can eliminate the influence of 1/f noise on the measurement spectrum broadening, so it provides a powerful way for accurate measurement of narrow linewidth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.428787 | DOI Listing |
Nature
January 2025
imec, Leuven, Belgium.
Silicon photonics is a rapidly developing technology that promises to revolutionize the way we communicate, compute and sense the world. However, the lack of highly scalable, native complementary metal-oxide-semiconductor (CMOS)-integrated light sources is one of the main factors hampering its widespread adoption. Despite considerable progress in hybrid and heterogeneous integration of III-V light sources on silicon, monolithic integration by direct epitaxy of III-V materials remains the pinnacle of cost-effective on-chip light sources.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2024
Department of Physics, Indian Institute of Technology Delhi, IIT Delhi, Hauz Khas, New Delhi, Delhi, 110016, INDIA.
We have grown (111)- and (001)-oriented NiO thin films on (0001)-Sapphire and (001)-MgO substrates using pulsed laser deposition (PLD), respectively. DC magnetic susceptibility measurements underline that the Néel temperatures of the samples are beyond room-temperature. This is further confirmed by the presence of two-magnon Raman scattering modes in these films in ambient conditions.
View Article and Find Full Text PDFCascaded Raman fiber lasers (CRFLs) with wavelength-independent feedback can provide power at any wavelength in near-IR regions. However, broad feedback leads to a broad output spectrum, decreasing spectral power density at a desired wavelength. The output characteristics of CRFLs can be controlled by controlling the feedback.
View Article and Find Full Text PDFWe experimentally demonstrate a cost-effective dual-polarization quadrature phase shift keying (DP-QPSK) coherent passive optical network (PON) system that operates at 100 Gbits/s/λ. This system utilizes distributed feedback lasers (DFBs) and a carrier recovery algorithm facilitated by a bifunctional frequency-domain pilot tone (FPT). To reduce costs in coherent PON implementations, low-cost DFBs are employed as the sole light sources, replacing the more expensive external cavity lasers (ECLs) at both the optical line terminal (OLT) and the optical network units (ONUs).
View Article and Find Full Text PDFAn ultra-narrow-linewidth laser is a core device in fields such as optical atomic clocks, quantum communications, and microwave photonic oscillators. This paper reports an ultra-narrow-linewidth self-injection locked semiconductor laser, which is realized through optical feedback from a high-Q (258 million) Fabry-Perot (FP) cavity constructed with three mirrors, generating an output power of 12 mW. Employing a delay self-heterodyne method based on a signal source analyzer, the phase noise of the laser is -129 dBc/Hz at 100 kHz offset frequency, with an intrinsic linewidth of 3 mHz.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!