The chaotic output emitted by a diode laser with optical feedback has fascinated the community for decades. The external cavity delay time imparts a weak level of periodicity to the laser output (the so-called "time delay signature", TDS) that is a drawback for applications that require random optical signals. A lot of efforts have focused in suppressing the TDS either by post-processing the signal or by using alternative ways to generate random optical signals. Here, we compare the signals generated by two optical feedback setups: in the first one, the stimulated Brillouin backscattered light from a standard optical fibre is re-injected into the laser (stimulated Brillouin scattering optical feedback, SBSOF); in the second one, the light transmitted through the fibre is re-injected into the laser (conventional optical feedback, COF). We analyse the permutation entropy, a well-known measure of complexity that captures order relations between values of a time series. We find that, on average, the signal generated by the SBSOF setup has slightly lower PE than the one generated by the COF setup, except when the sampling time of the intensity signal is an exact multiple of the delay; in that case, due to TDS, the entropy of the COF signal is lower than that of the SBSOF signal. We interpret the lower entropy value of the SBSOF signal as due to oscillations at the Brillouin frequency shift. Taken together, our results show that TDS suppression can have an undesirable side effect: a decrease of the entropy of the signal.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.434071DOI Listing

Publication Analysis

Top Keywords

optical feedback
20
stimulated brillouin
12
permutation entropy
8
brillouin scattering
8
optical
8
scattering optical
8
random optical
8
optical signals
8
fibre re-injected
8
re-injected laser
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!