We demonstrate an L-band wavelength-tunable passively mode-locked fiber laser using a single long-period fiber grating (LPFG) as a narrow-band optical attenuator (NBOA). Through bending the LPFG, the central wavelength can be continuously tuned from 1582.02 to 1597.29 nm, while the output power only varies from 1.465 to 1.057 mW, approximately a rate of 22 µW/nm variation. This is the first time that LPFG is functioned as a NBOA in mode-locked fiber lasers, showing the great advantage of less impact on output power variation reduction. Besides, the total cavity length is 5.08 m, which is the shortest length yet reported in wavelength-tunable mode-locked fiber lasers. The wavelength tuning could also be realized at harmonic mode locking with tuning range of 14.69 nm under 5 harmonic.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.433298DOI Listing

Publication Analysis

Top Keywords

mode-locked fiber
16
fiber laser
8
long-period fiber
8
fiber grating
8
output power
8
fiber lasers
8
fiber
6
wavelength-tunable l-band
4
mode-locked
4
l-band mode-locked
4

Similar Publications

Tunable Multisoliton State Ultrafast Fiber Laser Based on NiSe and Generation of Vector Dual-Wavelength Solitons.

ACS Appl Mater Interfaces

January 2025

College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Lin'an 311300, China.

As a member of the chalcogenide family, NiSe exhibits a direct bandgap of 1.74 eV, making it a promising candidate for nonlinear optical devices. However, its potential in the near-infrared region of the telecommunication band has not been fully explored.

View Article and Find Full Text PDF

Palladium Nanocubes as Saturable Absorbers for Mode-Locked Laser Generation at 1.56 μm.

Nanomaterials (Basel)

December 2024

College of Information Science and Engineering, Northeastern University, Shenyang 110819, China.

Palladium (Pd) nanocubes, a type of metallic nanostructure, have demonstrated remarkable optoelectronic properties, garnering significant attention. However, their nonlinear optical characteristics and related device applications remain underexplored. In this study, we report the fabrication of a novel saturable absorber (SA) by depositing Pd nanocubes onto a D-shaped fiber (DF).

View Article and Find Full Text PDF

Preparation of amorphous silicon-doped YO aerogel enabling nonlinear optical features for ultrafast photonics.

Nanophotonics

April 2024

School of Information Science and Engineering, Key Laboratory of Laser and Infrared System of Ministry of Education, Shandong University, Qingdao 266237, China.

Amorphous aerogels with the microscopic nanoscale three-dimensional meshes provide superb platforms for investigating unique physicochemical properties. In order to enhance the physical, thermal and mechanical performances, one efficient and common approach is integrating diverse functional materials. Herein, we report a simple strategy to fabricate the amorphous silicon doped YO aerogels with the post-gelation method under the N/EtOH supercritical atmosphere.

View Article and Find Full Text PDF
Article Synopsis
  • Fiber mode-locked lasers produce ultrashort pulses and can have varying optical outputs based on cavity adjustments, leading to challenges due to their multistability.
  • The study showcases the use of the Soft Actor-Critic algorithm to generate a harmonic mode-locked regime in a fiber laser, utilizing an ion-gated nanotube saturable absorber.
  • This research presents a machine-learning approach to effectively manage pumping power and absorber transmission, enabling automatic adjustments to overcome the complexities of nonlinear optical systems.
View Article and Find Full Text PDF

We demonstrate a high-power 925-nm pulsed laser system based on a frequency-doubled, all-polarization-maintaining (PM) fiber laser source operating at 1.8 µm. The seed is a figure-9 mode-locked oscillator, which incorporates a nonlinear amplifying loop mirror.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!