We report very low-loss deuterated silicon nitride (SiN:D) micro-ring resonators fabricated by back-end CMOS compatible low-temperature plasma-enhanced chemical vapor deposition (PECVD) without annealing. Strong confinement micro-ring resonators with a quality factor of > 2 million are achieved, corresponding to a propagation loss in the 1460-1610 nm wavelength range of ∼ 0.17 dB/cm. We further report the generation of low-noise coherent Kerr microcomb states including different perfect soliton crystals (PSC) in PECVD SiN:D micro-ring resonators. These results manifest the promising potential of the back-end CMOS compatible SiN:D platform for linear and nonlinear photonic circuits that can be co-integrated with electronics.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.438436DOI Listing

Publication Analysis

Top Keywords

micro-ring resonators
12
deuterated silicon
8
silicon nitride
8
sind micro-ring
8
back-end cmos
8
cmos compatible
8
low-noise kerr
4
kerr frequency
4
frequency comb
4
comb generation
4

Similar Publications

MoTe Photodetector for Integrated Lithium Niobate Photonics.

Nanomaterials (Basel)

January 2025

State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China.

The integration of a photodetector that converts optical signals into electrical signals is essential for scalable integrated lithium niobate photonics. Two-dimensional materials provide a potential high-efficiency on-chip detection capability. Here, we demonstrate an efficient on-chip photodetector based on a few layers of MoTe on a thin film lithium niobate waveguide and integrate it with a microresonator operating in an optical telecommunication band.

View Article and Find Full Text PDF
Article Synopsis
  • The proposed hybrid photonic platform combines chalcogenide glass (GeSbSe) with lithium niobate on insulator (LNOI) to enhance performance and compactness for integrated photonic systems.
  • Key components such as grating couplers, micro-ring resonators, multimode interference couplers, and Mach-Zehnder interferometers are designed and fabricated, achieving high quality factors and low propagation losses.
  • This platform's unique optical properties allow for scalable, low-loss integrated photonic circuits, making it suitable for applications in high-speed optical communications and signal processing.
View Article and Find Full Text PDF

Four-channel graphene optical receiver.

Nanophotonics

September 2024

State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.

Silicon photonics with the advantages of low power consumption and low fabrication cost is a crucial technology for facilitating high-capacity optical communications and interconnects. The graphene photodetectors (GPDs) featuring broadband operation, high speed, and low integration cost can be good additions to the SiGe photodetectors, supporting high-speed photodetection in wavelength bands beyond 1.6 μm on silicon.

View Article and Find Full Text PDF
Article Synopsis
  • - Laser-based mid-IR photothermal spectroscopy (PTS) is a rapid and sensitive analytical method that utilizes advanced laser technology to capture the absorption characteristics of various materials, such as liquids or solids.
  • - This study utilizes an external cavity quantum cascade laser (EC-QCL) to analyze a thin film of polymethyl methacrylate (PMMA) on a silicon nitride micro-ring resonator, demonstrating its effectiveness in creating an on-chip photothermal sensor.
  • - The research highlights the optimal alignment and focusing techniques for the laser setup, showing that PTS can lead to compact, efficient sensors suitable for real-time monitoring in industrial applications.
View Article and Find Full Text PDF

The accurate determination of the effective and group refractive indices (n and n) of optical waveguides as a function of wavelength is of critical importance to the design of photonic integrated circuits (PICs). This paper demonstrates the extraction of the two parameters of silicon-on-insulator (SOI) rib waveguides using the transmission spectra of two racetrack micro-ring resonators (MRRs) with different perimeters. The extracted n and n exhibit an uncertainty of approximately 10.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!