We demonstrate experimentally two-fold enhancement of the decay rate of NV° centers on diamond/Si substrate as opposed to a bare Si substrate. We link the decay enhancement to the interplay between the excitation of substrate modes and the presence of non-radiative decay channels. We show that the radiative decay rate can vary by up to 90% depending on the thickness of the diamond film.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.425706DOI Listing

Publication Analysis

Top Keywords

decay rate
12
decay
5
rate enhancement
4
enhancement diamond
4
diamond nv-centers
4
nv-centers diamond
4
diamond thin
4
thin films
4
films demonstrate
4
demonstrate experimentally
4

Similar Publications

Direct Observation of Hybridization Between Co 3d and S 2p Electronic Orbits: Moderating Sulfur Covalency to Pre-Activate Sulfur-Redox in Lithium-Sulfur Batteries.

Adv Sci (Weinh)

December 2024

Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025, China.

Lithium-sulfur batteries (LSBs) offer high energy density and environmental benefits hampered by the shuttle effect related to sluggish redox reactions of long-chain lithium polysulfides (LiPSs). However, the fashion modification of the d-band center in separators is still ineffective, wherein the mechanism understanding always relies on theoretical calculations. This study visibly probed the evolution of the Co 3d-band center during charge and discharge using advanced inverse photoemission spectroscopy/ultraviolet photoemission spectroscopy (IPES/UPS), which offers reliable evidence and are consistent well with theoretical calculations.

View Article and Find Full Text PDF

Nonporous TiO@C microsphere with a highly integrated structure for high volumetric lithium storage and enhance initial coulombic efficiency.

Sci Rep

December 2024

Shandong Engineering Research Center of Green and High-value Marine Fine Chemical, Weifang University of Science and Technology, Shouguang, 262700, People's Republic of China.

To enhance the volumetric energy density and initial coulombic efficiency (ICE) of titanium oxide (TiO) as anode electrode material for lithium-ion batteries (LIB), this study employed a surface-confined in-situ inter-growth mechanism to prepare a TiO embedded carbon microsphere composite. The results revealed that the composite exhibited a highly integrated structure of TiO with oxygen vacancies and carbon, along with an exceptionally small specific surface area of 11.52 m/g.

View Article and Find Full Text PDF

A green method on dipole solvent as "Activators": γ-valerolactone/HO system promoted degradation of ciprofloxacin by ferrate(Ⅵ).

Water Res

December 2024

Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.

This paper investigates the efficient degradation of ciprofloxacin (CIP) in a sustainable γ-valerolactone (GVL) and water (H₂O) mixed system by controlling proton transfer and reducing the self-decay rate of Fe(VI). The kinetic model reveals that the GVL/H₂O system exhibits a rate constant of (9.7 ± 0.

View Article and Find Full Text PDF

Accurate replication of soft tissue properties is essential for the development of car crash test dummy skin to ensure the precision of biomechanical injury data. However, the intricacy of multi-layer soft tissue poses challenges in standardizing the development and testing of dummy skin materials to emulate soft tissue properties. This study presents a comprehensive testing and analysis of the compressive mechanical properties of both single and multi-layered soft tissues and car crash dummy skin materials, aiming to enhance the biofidelity of dummy skin.

View Article and Find Full Text PDF

Enhancing Stability and 6C Fast Charging in µSi||LiNiCoMnO Lithium-Ion Batteries Using Conductive Binders With Multiple Hydrogen Bonds.

Small

December 2024

State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.

Micro-sized silicon (µSi) anodes are an attractive alternative to graphite for high-energy lithium-ion batteries (LIBs) due to their low cost and high specific capacity. However, they suffer from severe volume expansion during lithiation, leading to fast capacity decay and poor rate capability. Herein, a new hybrid binder featuring a cross-linked conductive network and multiple hydrogen bonds for µSi anodes with high areal capacity is reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!