We demonstrate experimentally two-fold enhancement of the decay rate of NV° centers on diamond/Si substrate as opposed to a bare Si substrate. We link the decay enhancement to the interplay between the excitation of substrate modes and the presence of non-radiative decay channels. We show that the radiative decay rate can vary by up to 90% depending on the thickness of the diamond film.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.425706 | DOI Listing |
Adv Sci (Weinh)
December 2024
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025, China.
Lithium-sulfur batteries (LSBs) offer high energy density and environmental benefits hampered by the shuttle effect related to sluggish redox reactions of long-chain lithium polysulfides (LiPSs). However, the fashion modification of the d-band center in separators is still ineffective, wherein the mechanism understanding always relies on theoretical calculations. This study visibly probed the evolution of the Co 3d-band center during charge and discharge using advanced inverse photoemission spectroscopy/ultraviolet photoemission spectroscopy (IPES/UPS), which offers reliable evidence and are consistent well with theoretical calculations.
View Article and Find Full Text PDFSci Rep
December 2024
Shandong Engineering Research Center of Green and High-value Marine Fine Chemical, Weifang University of Science and Technology, Shouguang, 262700, People's Republic of China.
To enhance the volumetric energy density and initial coulombic efficiency (ICE) of titanium oxide (TiO) as anode electrode material for lithium-ion batteries (LIB), this study employed a surface-confined in-situ inter-growth mechanism to prepare a TiO embedded carbon microsphere composite. The results revealed that the composite exhibited a highly integrated structure of TiO with oxygen vacancies and carbon, along with an exceptionally small specific surface area of 11.52 m/g.
View Article and Find Full Text PDFWater Res
December 2024
Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
This paper investigates the efficient degradation of ciprofloxacin (CIP) in a sustainable γ-valerolactone (GVL) and water (H₂O) mixed system by controlling proton transfer and reducing the self-decay rate of Fe(VI). The kinetic model reveals that the GVL/H₂O system exhibits a rate constant of (9.7 ± 0.
View Article and Find Full Text PDFBiomimetics (Basel)
December 2024
China Automotive Technology and Research Center, Tianjin 300300, China.
Accurate replication of soft tissue properties is essential for the development of car crash test dummy skin to ensure the precision of biomechanical injury data. However, the intricacy of multi-layer soft tissue poses challenges in standardizing the development and testing of dummy skin materials to emulate soft tissue properties. This study presents a comprehensive testing and analysis of the compressive mechanical properties of both single and multi-layered soft tissues and car crash dummy skin materials, aiming to enhance the biofidelity of dummy skin.
View Article and Find Full Text PDFSmall
December 2024
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
Micro-sized silicon (µSi) anodes are an attractive alternative to graphite for high-energy lithium-ion batteries (LIBs) due to their low cost and high specific capacity. However, they suffer from severe volume expansion during lithiation, leading to fast capacity decay and poor rate capability. Herein, a new hybrid binder featuring a cross-linked conductive network and multiple hydrogen bonds for µSi anodes with high areal capacity is reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!