Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The performance of metasurfaces measured experimentally often discords with expected values from numerical optimization. These discrepancies are attributed to the poor tolerance of metasurface building blocks with respect to fabrication uncertainties and nanoscale imperfections. Quantifying their efficiency drop according to geometry variation are crucial to improve the range of application of this technology. Here, we present a novel optimization methodology to account for the manufacturing errors related to metasurface designs. In this approach, accurate results using probabilistic surrogate models are used to reduce the number of costly numerical simulations. We employ our procedure to optimize the classical beam steering metasurface made of cylindrical nanopillars. Our numerical results yield a design that is twice more robust compared to the deterministic case.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.430409 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!