A large variety of optical systems and devices are highly sensitive to temperature variations and gradients induced by the absorption of thermal energy. Temperature gradients developed across optical elements, mounts, and supporting structures can lead to thermally induced wavefront aberrations and, consequently, to the reduction of optical performance. Consequently, modeling, estimation, and control of thermal dynamics are important problems that need to be carefully addressed by optical system designers. However, the development of accurate and experimentally validated models of thermal dynamics that are suitable for prediction, estimation, and control is a challenging problem. The main modeling challenges originate from model uncertainties, nonlinearities, and the fact that the thermal dynamics is inherently large-dimensional. In this manuscript, we present a synergistic modeling framework that combines first-principle heat transfer modeling, experimental validation, finite element techniques, and model order reduction techniques. We experimentally validate our approach on a recently developed 8-inch mirror prototype equipped with heaters and temperature sensors. We are able to accurately predict the temperature transients lasting for several hours. Furthermore, we apply our modeling approach to a parabolic mirror with an optimized honeycomb back structure. We investigate how the choice of mirror materials, such as aluminum, beryllium, Zerodur, and ULE, influence the ability to derive reduced-order models. Our results show that mirror thermal dynamics can be approximated by low-order state-space models. The modeling approach used in this manuscript is relevant for the prediction, estimation, and control of thermal dynamics and thermally induced aberrations in optical systems. MATLAB, COMSOL Multiphysics, and LiveLink codes used in this manuscript are available online.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.433172 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Sun Yat-Sen University, School of Chemistry, CHINA.
Immobilizing organic chromophores within the rigid framework of metal-organic frameworks (MOFs) augments fluorescence by effectively curtailing molecular motions. Yet, the substantial interspaces and free volumes inherent to MOFs can undermine photoluminescence efficiency, as they partially constrain intramolecular dynamics. In this study, we achieved optimization of both one- and two-photon excited fluorescence by incorporating linkers into an interpenetrated tetraphenylethene-based MOF (TPE-MOF).
View Article and Find Full Text PDFJ Biomater Appl
January 2025
Chemistry Department, Surendra Institute of Engineering and Management, Siliguri, India.
The rapid advancement of 3D printing technology has revolutionized biomedical engineering, enabling the creation of complex and personalized prototypes. Thermal properties play a crucial role in the performance and safety of these biomedical devices. Understanding their thermal behavior is essential for ensuring their effectiveness, reliability, and compatibility with the human body.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Radiology, C.J. Gorter MRI Center, Leiden University Medical Center, Leiden, The Netherlands.
Brown adipose tissue (BAT) is a metabolically highly active tissue that dissipates energy stored within its intracellular triglyceride droplets as heat. Others have previously utilized MRI to show that the fat fraction of human supraclavicular BAT (scBAT) decreases upon cold exposure, compared with baseline (i.e.
View Article and Find Full Text PDFSensors (Basel)
January 2025
National Key Laboratory of Multispectral Information Intelligent Processing Technology, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430000, China.
Despite rapid progress in UAV-based infrared vehicle detection, achieving reliable target recognition remains challenging due to dynamic viewpoint variations and platform instability. The inherent limitations of infrared imaging, particularly low contrast ratios and thermal crossover effects, significantly compromise detection accuracy. Moreover, the computational constraints of edge computing platforms pose a fundamental challenge in balancing real-time processing requirements with detection performance.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Computer and Information Systems, The University of Aizu, Aizuwakamatsu 965-8580, Fukushima, Japan.
In the current era of advanced IoT technology, human occupancy monitoring and positioning technology is widely used in various scenarios. For example, it can optimize passenger flow in public transportation systems, enhance safety in large shopping malls, and adjust smart home devices based on the location and number of occupants for energy savings. Additionally, in homes requiring special care, it can provide timely assistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!