We demonstrate broadband and powerful terahertz (THz) generation at megahertz repetition rate based on intra-oscillator optical rectification (OR) in gallium phosphide (GaP). By placing the nonlinear crystal directly inside the cavity of a Kerr-lens mode-locked ultrafast diode-pumped solid-state laser (DPSSL) oscillator, we demonstrate a compact and single-stage THz source. Using only 7 W of diode-pump power, we drive OR in a GaP crystal with 22 W of average power at ∼80 MHz repetition rate. In a first configuration, using a 0.3-mm-thick GaP and 105 fs driving pulses, we generate up to 150 µW of THz radiation with a spectrum extending to 5.5 THz. In a second configuration allowing for sub-50-fs pulse duration, we generate up to 7 THz inside a 0.1-mm-thick GaP crystal. This performance is well suited for THz time-domain spectroscopy and THz imaging. Intra-oscillator THz generation in sub-100-fs DPSSLs is a promising way to scale down footprint, complexity and cost of powerful broadband THz sources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.426750 | DOI Listing |
Biosensors (Basel)
November 2024
Institute of Laser Engineering, Osaka University, Suita 565-0871, Osaka, Japan.
Biosensors operating in the terahertz (THz) region are gaining substantial interest in biomedical analysis due to their significant potential for high-sensitivity trace-amount solution detection. However, progress in compact, high-sensitivity chips and methods for simple, rapid and trace-level measurements is limited by the spatial resolution of THz waves and their strong absorption in polar solvents. In this work, a compact nonlinear optical crystal (NLOC)-based reflective THz biosensor with a few arrays of asymmetrical meta-atoms was developed.
View Article and Find Full Text PDFHeliyon
December 2024
Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran.
Optical sensors are among the most significant optical devices that have found extensive applications for THz sensing. Surface plasmon-based sensors have attracted increasing attention more than other kinds of optical sensors such as photonic crystal, optical fiber, and graphene sensors, owing to their compact footprint, fast reaction, and high sensitivity value. Therefore, this work reviews plasmonic sensor structures divided into three general categories.
View Article and Find Full Text PDFHolographically designed aperiodic lattices (ALs) have proven to be an exciting engineering technique for achieving electrically switchable single- or multi-frequency emissions in terahertz (THz) semiconductor lasers. Here, we employ the nonlinear transfer matrix modeling method to investigate multi-wavelength nonlinear (sum- or difference-) frequency generation within an integrated THz (idler) laser cavity that also supports optical (pump and signal) waves. The laser cavity includes an aperiodic lattice, which engineers the idler photon lifetimes and effective refractive indices.
View Article and Find Full Text PDFBiotechnol Adv
December 2024
Center of Super-Resolution Optics and Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China. Electronic address:
Terahertz (THz) radiation is widely recognized as a non-destructive, label-free, and highly- sensitive tool for biomedical detections. Nevertheless, its application in precision biomedical fields faces challenges due to poor spatial resolution caused by intrinsically long wavelength characteristics. THz scanning near-field optical microscopy (THz-SNOM), which surpasses the Rayleigh criterion, offers micrometer and nanometer-scale spatial resolution, making it possible to perform precise bioinspection with THz imaging.
View Article and Find Full Text PDFAdv Mater
December 2024
Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
The orbital Hall effect originating from light materials with weak spin-orbit coupling, has attracted considerable interest in spintronic applications. Recent studies demonstrate that orbital currents can be generated from charge currents through the orbital Hall effect in ferromagnetic materials. However, the generation of orbital currents in antiferromagnets has so far been elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!