TiO:Yb,Er films with different concentrations of Mn are grown on SiO glass substrates by pulsed laser deposition. It is found that the introduction of Mn enhanced the intensity of upconversion emission. In particular, TiO:Yb,Er thin film with 5% Mn ions exhibits the brightest upconversion emission. The upconversion red emission intensity is increased by 2.5-fold than that of a TiO:Yb,Er thin film without Mn ions, which is ascribed to the multi-photon absorption and efficient exchange-energy transfer process between Er and Mn. The high transmittance and good conductivity of the films made them possible to act as electron transport layer in solar cells.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.430282DOI Listing

Publication Analysis

Top Keywords

tioyber thin
12
thin film
12
upconversion red
8
emission tioyber
8
upconversion emission
8
film ions
8
enhanced upconversion
4
red light
4
emission
4
light emission
4

Similar Publications

High Performance of Cs2AgBiBr6 Perovskite-based Photodetectors by Adding DEAC.

Chemistry

December 2024

East China University of Science and Technology, School of Materials Science and Engineering, meilong Road, 200237, shanghai, CHINA.

Perovskite-based photodetectors (PDs) are broadly utilized in optical communication, non-destructive testing, and smart wearable devices due to their ability to convert light into electrical signals. However, toxicity and instability hold back their mass production and commercialization. The lead-free Cs2AgBiBr6 double perovskite film, promised to be an alternative, is fabricated by electrophoretic deposition (EPD), which compromises film quality.

View Article and Find Full Text PDF

pH sensing technology is pivotal for monitoring aquatic ecosystems and diagnosing human health conditions. Indium-gallium-zinc oxide electrolyte-gated thin-film transistors (IGZO EGTFTs) are highly regarded as ion-sensing devices due to the pH-dependent surface chemistry of their sensing membranes. However, applying EGTFT-based pH sensors in complex biofluids containing diverse charged species poses challenges due to ion interference and inherently low sensitivity constrained by the Nernst limit.

View Article and Find Full Text PDF

Robust and ultra-thin nanocellulose/MXene composite film and its performance in efficient electricity-generation and sensing.

Int J Biol Macromol

December 2024

Department of Plastic and Cosmetic Surgery, Treatment Center of Burn and Trauma, Affiliated Hospital of Jiangnan University, Wuxi 214122, China. Electronic address:

The conversion of mechanical energy into electrical energy by triboelectric nanogenerators (TENG) has attracted attention in recent years, particularly in the field of wearable sensor. In this work, TEMPO-oxidized cellulose nanofibers (TOCNF) with carboxylate groups were compounded with MXene to serve as both the negative friction layer and the electrode in assembling a TENG with nylon. The synergistic effect between TOCNF and MXene was analyzed to disclose its influence on the performance of the as-prepared TENG.

View Article and Find Full Text PDF

High photothermal conversion efficiency of RF sputtered TiO Magneli phase thin films and its linear correlation with light absorption capacity.

Sci Rep

December 2024

Centre Énergie, Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650, Blvd, Lionel-Boulet, Varennes, QC, J3X-1P7, Canada.

RF-sputtering is used to deposit TiO-Magneli-phase films onto various substrates at deposition temperatures (T) ranging from 25 to 650 °C. Not only the structural, but also electrical conductivity, optical absorbance and photothermal properties of the TiO films are shown to change significantly with T. A T of 500 °C is pointed out as the optimal temperature that yields highly-crystalized pure-TiO-Magneli phase with a densely-packed morphology and a conductivity as high as 740 S/cm.

View Article and Find Full Text PDF

This study explores the impact of metallic shells by electroforming method on the mechanical behavior of thermoplastic polyurethane (TPU)-based lattice structures. First, the TPU lattice structures were printed by additive manufacturing technique. Then layers of Ni and Cu as a thin shell were dressed on the TPU lattice structures in the electroforming baths of Ni and Cu solutions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!