AI Article Synopsis

  • UOWC links are affected by scattering from impurities and turbidity in water, leading to inter-symbol interference (ISI) that limits channel capacity and information rates.
  • This paper analyzes channel capacity for UOWC systems, incorporating ISI and ocean salinity effects, using a linear discrete-time filtering model.
  • Novel bounds for channel capacity with non-uniform on-off keying modulation are established, demonstrating that a tailored input distribution can enhance capacity, particularly in conditions of low optical signal-to-noise ratio.

Article Abstract

Point-to-point underwater optical wireless communication (UOWC) links are mainly impaired by scattering due to impurities and turbidity in the open water, resulting in a significant inter-symbol interference (ISI) that limits seriously both channel capacity and the maximum practical information rate. This paper conducts, for the first time, the channel capacity analysis of UOWC systems in the presence of ISI and salinity-induced oceanic turbulence when the undersea optical channel is accurately modeled by linear discrete-time filtering of the input symbols. In this way, novel upper and lower bounds on channel capacity and mutual information are developed for non-uniform on-off keying (OOK) modulation when different constraints are imposed on the channel input. The results show that the capacity-achieving distribution, which is computed through numerical optimization, is discrete and depends on the optical signal-to-noise-ratio (SNR). Moreover, a non-uniform input distribution significantly improves the channel capacity of such systems affected by ISI and oceanic turbulence, especially at low optical SNR. Monte Carlo techniques are employed to test the developed bounds for different undersea optical channels with one, two and three casual ISI coefficients.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.430200DOI Listing

Publication Analysis

Top Keywords

channel capacity
16
oceanic turbulence
12
underwater optical
8
optical wireless
8
wireless communication
8
salinity-induced oceanic
8
undersea optical
8
optical
6
channel
6
capacity
5

Similar Publications

Optical Coherence Tomography (OCT) offers high-resolution images of the eye's fundus. This enables thorough analysis of retinal health by doctors, providing a solid basis for diagnosis and treatment. With the development of deep learning, deep learning-based methods are becoming more popular for fundus OCT image segmentation.

View Article and Find Full Text PDF

Integrating Particle Motion Tracking into Thermal Gel Electrophoresis for Label-Free Sugar Sensing.

ACS Sens

January 2025

Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States.

Bioanalytical sensors are adept at quantifying target analytes from complex sample matrices with high sensitivity, but their multiplexing capacity is limited. Conversely, analytical separations afford great multiplexing capacity but typically require analyte labeling to increase sensitivity. Here, we report the development of a separation-based sensor to sensitively quantify unlabeled polysaccharides using particle motion tracking within a microfluidic electrophoresis platform.

View Article and Find Full Text PDF

Winter wild oat (Avena sterilis subsp. ludoviciana (Durieu) Gillet & Magne) has been considered the most common and troublesome weed in wheat fields of Iran. The widespread and continuous use of herbicides has led to the emergence and development of resistant biotypes in A.

View Article and Find Full Text PDF

In order to solve the problem of weak single domain generalization ability in existing crowd counting methods, this study proposes a new crowd counting framework called Multi-scale Attention and Hierarchy level Enhancement (MAHE). Firstly, the model can focus on both the detailed features and the macro information of structural position changes through the fusion of channel attention and spatial attention. Secondly, the addition of multi-head attention feature module facilitates the model's capacity to effectively capture complex dependency relationships between sequence elements.

View Article and Find Full Text PDF

A multifunctional quasi-solid-state polymer electrolyte with highly selective ion highways for practical zinc ion batteries.

Nat Commun

January 2025

State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.

The uncontrolled dendrite growth and detrimental parasitic reactions of Zn anodes currently impede the large-scale implementation of aqueous zinc ion batteries. Here, we design a versatile quasi-solid-state polymer electrolyte with highly selective ion transport channels via molecular crosslinking of sodium polyacrylate, lithium magnesium silicate and cellulose nanofiber. The abundant negatively charged ionic channels modulate Zn desolvation process and facilitate ion transport.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!