This study deals with the preparation of temperature-sensitive chitosan/hydroxypropyl cellulose-graft-polyacrylamide (CS/HPC-g-PAAm) blend microspheres as a controlled drug release system. For this purpose, HPC-g-PAAm copolymers of hydroxypropyl cellulose (HPC) with acrylamide (AAm) were synthesized using cerium (IV) ammonium nitrate as initiator. The HPC-g-PAAm copolymers were characterized by using Fourier transform infrared spectroscopy (FTIR), elemental analysis, and differential scanning calorimetry (DSC). Lower critical solution temperatures (LCST) of the synthesized copolymers were determined. Temperature-sensitive blend microspheres of HPC-g-PAAm and chitosan were prepared by emulsion cross-linking method using glutaraldehyde (GA) as a cross-linker in the hydrochloric acid catalyst (HCl) and they were used to achieve controlled release of amoxicillin trihydrate (AMX), an antibiotic drug. The microspheres were characterized by DSC, X-ray diffraction (X-RD), and FTIR spectroscopy. In addition, surfaces of empty and drug-loaded microspheres were examined by scanning electron microscopy (SEM). The effects of variables such as CS/HPC-g-PAAm ratio, drug/polymer ratio, amount of cross-linker, and reaction time of grafting on AMX release were investigated at three different pH environments (1.2, 6.8, 7.4) at 25 °C, 37 °C, and 50 °C. The release results showed that the microspheres had temperature sensitivity and the AMX release was slightly more controlled by especially increasing graft yield (%).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2021.09.193DOI Listing

Publication Analysis

Top Keywords

hydroxypropyl cellulose
8
controlled release
8
release amoxicillin
8
amoxicillin trihydrate
8
blend microspheres
8
hpc-g-paam copolymers
8
amx release
8
microspheres
6
release
6
synthesis characterization
4

Similar Publications

Structural Color Contact Lenses from Cholesteric Cellulose Liquid Crystals.

Small Methods

December 2024

Institute of Translational Medicine, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.

Colored contact lenses have gained popularity among young individuals owing to their ability to alter the appearance of the wearer's eyes. However, conventional lenses containing chemical dyes are susceptible to detachment of the pigment layer, which can lead to corneal damage. In this research, a novel cellulose-based structural color contact lens (SCCL) is presented that enhances aesthetic appeal via a cholesteric liquid crystal (CLC) layer.

View Article and Find Full Text PDF

Development, and evaluation of film forming solutions for transdermal drug delivery of Zaltoprofen.

J Biomater Sci Polym Ed

December 2024

Department of Pharmaceutics, Dr. Prabhakar B Kore Basic Science Research Center, Off-campus, KLE College of Pharmacy (A constituent unit of KAHER-Belagavi), Bengaluru, Karnataka, India.

Zaltoprofen (ZAL) is a non-steroidal anti-inflammatory drug (NSAID) with a short half-life (∼2.8 h) due to extensive first pass metabolism. In this context, 16 different polymeric film forming solutions (PFFS) of ZAL were developed using different grades of Eudragits, Polyvinylpyrrolidones, Kollicoat MAE 100 P and Hydroxypropyl cellulose as film formers, and polyethylene glycol 400 as a plasticizer in equal parts of ethanol and isopropyl alcohol used as solvents.

View Article and Find Full Text PDF

Detection of Hydrogen Peroxide Vapors Using Acidified Titanium(IV)-Based Test Strips.

Materials (Basel)

December 2024

Department of Chemistry, 316 Physical Science, Oklahoma State University, Stillwater, OK 74078, USA.

One method for the colorimetric detection of hydrogen peroxide vapor is based on a titanium-hydrogen peroxide complex. A color changing material based on a titania hydroxypropyl cellulose thin film was initially developed. However, as this material dries, the sensitivity of the material is significantly reduced.

View Article and Find Full Text PDF

In this study, we present a groundbreaking approach utilizing metal-free, visible light-mediated organic photoredox catalyzed atom transfer radical polymerization (O-ATRP) to synthesize cellulose-based stimuli-responsive polymers. Our method resulted in the successful synthesis of innovative metal-free poly(N-tertiary-butylacrylamide)-graft-hydroxypropyl cellulose (PNTBAM-g-HPC) polymers with exceptional control over molecular weight and narrow dispersity index (Đ) and explored their applications in organo-photocatalytic reactions. This approach addresses the limitations of traditional atom transfer radical polymerization method, which suffer from metal contamination and toxicity related problems.

View Article and Find Full Text PDF

Buildings, especially installed windows, account for a large proportion of global energy consumption. The research trend of smart windows leans towards multi-functional integration, concurrently achieving solar modulation and thermal management. However, sometimes a one-time performance switch cannot meet demands, making the design of multi-gradient adjustable smart windows particularly important.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!