The antibacterial activity of erythrocytes from Clarias fuscus associated with phagocytosis and respiratory burst generation.

Fish Shellfish Immunol

Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China. Electronic address:

Published: December 2021

It is widely known that red blood cells (RBCs) are responsible for respiration and the transport of gas. However, recent reports have also described the immune properties of RBCs, therefore creating new understanding for the functionality of RBCs. However, little is known about the immunological role of RBCs in bony fish. In this study, we used RBCs from Clarias fuscus as a model and demonstrate that these cells exhibited phagocytic ability with both latex beads and bacteria. Scanning electron microscopy and transmission electron microscopy provided visual confirmation of the phagocytotic process in RBCs. In addition, we used flow cytometry and fluorescence microscopy to analyse the rate of phagocytosis in RBCs. We found that RBCs exhibited stable phagocytotic ability with latex beads ranging from 0.5 to 1.0 μm in size. In response to bacterial stimulation, RBCs produced reactive oxygen species (ROS) and nitric oxide synthase (NOS), which are harmful to bacteria. RBCs also have an antioxidant system. Under conditions of oxidative stress, the expression levels of antioxidant enzymes, and particularly those of superoxide dismutase(SOD) increased significantly. Our results show that the erythrocytes of bony fish are phagocytic and also produce ROS which are toxic to bacteria. In addition, RBCs have an antioxidant system that removes excess ROS production to protect cells from oxidative damage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2021.10.001DOI Listing

Publication Analysis

Top Keywords

rbcs
11
clarias fuscus
8
bony fish
8
ability latex
8
latex beads
8
electron microscopy
8
rbcs antioxidant
8
antioxidant system
8
antibacterial activity
4
activity erythrocytes
4

Similar Publications

Hyperpolarized Xe MRI/MRS enables quantitative mapping of function in lung airspaces, membrane tissue, and red blood cells (RBCs) within the pulmonary capillaries. The RBC signal also exhibits cardiogenic oscillations that are reduced in pre-capillary pulmonary hypertension (PH). This effect is obscured in patients with concomitant defects in transfer from airspaces to RBCs, which increase RBC oscillation amplitudes.

View Article and Find Full Text PDF

Insulinoma-associated protein 1 (INSM1) is a relatively new immunostain used in the diagnostic assessment of tumors with neuroendocrine differentiation. While INSM1 positivity has been described in some non-neuroendocrine neoplasms, reactivity in red blood cells (RBCs) has only been anecdotally noted in one prior study without description of the degree/extent of staining. INSM1 staining in nucleated erythroid precursors has not been previously reported.

View Article and Find Full Text PDF

The aim of this study was to determine the antidotal potential of the chlorinated oxime K870 compared to obidoxime, as a monotherapy and in combination with atropine, in paraoxon (POX)-poisoned rats. The treatment doses of oximes were chosen as 20% of their LD values. The protective ratio (PR) of oxime K870 with atropine was significantly higher than that of obidoxime with atropine (68.

View Article and Find Full Text PDF

Red blood cells (RBCs) or Erythrocytes are essential components of the human body and they transport oxygen from the lungs to the body's tissues, regulate balance, and support the immune system. Abnormalities in RBC shapes (Poikilocytosis) and sizes (Anisocytosis) can impede oxygen-carrying capacity, leading to conditions such as anemia, thalassemia, McLeod Syndrome, liver disease, and so on. Hematologists typically spend considerable time manually examining RBC's shapes and sizes using a microscope and it is time-consuming.

View Article and Find Full Text PDF

An efficient heuristic for geometric analysis of cell deformations.

Comput Biol Med

January 2025

SCOPIA Research Group, University of the Balearic Islands, Dpt. of Mathematics and Computer Science, Crta. Valldemossa, Km 7.5, Palma, E-07122, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, E-07122, Spain; Laboratory for Artificial Intelligence Applications at UIB (LAIA@UIB), Palma, E-07122, Spain; Artificial Intelligence Research Institute of the Balearic Islands (IAIB), Palma, E-07122, Spain. Electronic address:

Sickle cell disease causes erythrocytes to become sickle-shaped, affecting their movement in the bloodstream and reducing oxygen delivery. It has a high global prevalence and places a significant burden on healthcare systems, especially in resource-limited regions. Automated classification of sickle cells in blood images is crucial, allowing the specialist to reduce the effort required and avoid errors when quantifying the deformed cells and assessing the severity of a crisis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!