Lesions to DNA compromise chromosome integrity, posing a direct threat to cell survival. The bacterial SOS response is a widespread transcriptional regulatory mechanism to address DNA damage. This response is coordinated by the LexA transcriptional repressor, which controls genes involved in DNA repair, mutagenesis and cell-cycle control. To date, the SOS response has been characterized in most major bacterial groups, with the notable exception of the Bacteroidetes. No LexA homologs had been identified in this large, diverse and ecologically important phylum, suggesting that it lacked an inducible mechanism to address DNA damage. Here, we report the identification of a novel family of transcriptional repressors in the Bacteroidetes that orchestrate a canonical response to DNA damage in this phylum. These proteins belong to the S24 peptidase family, but are structurally different from LexA. Their N-terminal domain is most closely related to CI-type bacteriophage repressors, suggesting that they may have originated from phage lytic phase repressors. Given their role as SOS regulators, however, we propose to designate them as non-canonical LexA proteins. The identification of a new class of repressors orchestrating the SOS response illuminates long-standing questions regarding the origin and plasticity of this transcriptional network.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8565304PMC
http://dx.doi.org/10.1093/nar/gkab773DOI Listing

Publication Analysis

Top Keywords

sos response
16
dna damage
12
non-canonical lexa
8
lexa proteins
8
mechanism address
8
address dna
8
response
6
sos
5
dna
5
proteins regulate
4

Similar Publications

Mobile genetic elements help drive horizontal gene transfer and bacterial evolution. Conjugative elements and temperate bacteriophages can be stably maintained in host cells. They can alter host physiology and regulatory responses and typically carry genes that are beneficial to their hosts.

View Article and Find Full Text PDF

Background: Fluoroquinolones are indispensable antibiotics used in treating bacterial infections in both human and veterinary medicine. However, resistance to these drugs presents a growing challenge. The SOS response, a DNA repair pathway activated by DNA damage, is known to influence resistance development, yet its role in fluoroquinolone resistance is not fully understood.

View Article and Find Full Text PDF

Treatment strategies for early stage diffuse large B-cell lymphoma (ES-DLBCL) include R-CHOP, with a similar schedule to that used in advanced stage, or a reduced number of cycles followed by radiation therapy (RT). We retrospectively analyzed 179 ES-DLBCL patients, managed according to the clinical practice. Treatment regimens include chemoimmunotherapy 4-6 cycles +/- RT as consolidation.

View Article and Find Full Text PDF

Unlabelled: The activity of DNA adenine methyltransferase (Dam) and DNA cytosine methyltransferase (Dcm) together account for nearly all methylated nucleotides in the K-12 MG1655 genome. Previous studies have shown that perturbation of DNA methylation alters global gene expression, but it is unclear whether the methylation state of Dam or Dcm target sites regulates local transcription. In recent genome-wide experiments, we observed an underrepresentation of Dam sites in transcriptionally silent extended protein occupancy domains (EPODs), prompting us to hypothesize that EPOD formation is caused partially by low Dam site density.

View Article and Find Full Text PDF

Hormesis-like effects of black phosphorus nanosheets on the spread of multiple antibiotic resistance genes.

J Hazard Mater

January 2025

College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China. Electronic address:

The production scalability and increasing demand for black phosphorus nanosheets (BPNSs) inevitably lead to environmental leakage. Although BPNSs' ecotoxicological effects have been demonstrated, their indirect health risks, such as inducing increased resistance in pathogenic bacteria, are often overlooked. This study explores the influence of BPNSs on the horizontal gene transfer of antibiotic resistance genes (ARGs) facilitated by the RP4 plasmid, which carries multiple resistance genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!