In nonstationary environments, data distributions can change over time. This phenomenon is known as concept drift, and the related models need to adapt if they are to remain accurate. With gradient boosting (GB) ensemble models, selecting which weak learners to keep/prune to maintain model accuracy under concept drift is nontrivial research. Unlike existing models such as AdaBoost, which can directly compare weak learners' performance by their accuracy (a metric between [0, 1]), in GB, weak learners' performance is measured with different scales. To address the performance measurement scaling issue, we propose a novel criterion to evaluate weak learners in GB models, called the loss improvement ratio (LIR). Based on LIR, we develop two pruning strategies: 1) naive pruning (NP), which simply deletes all learners with increasing loss and 2) statistical pruning (SP), which removes learners if their loss increase meets a significance threshold. We also devise a scheme to dynamically switch between NP and SP to achieve the best performance. We implement the scheme as a concept drift learning algorithm, called evolving gradient boost (LIR-eGB). On average, LIR-eGB delivered the best performance against state-of-the-art methods on both stationary and nonstationary data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCYB.2021.3109796 | DOI Listing |
Neural Netw
January 2025
School of Computer Science, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
Learning from data streams that emerge from nonstationary environments has many real-world applications and poses various challenges. A key characteristic of such a task is the varying nature of the underlying data distributions over time (concept drifts). However, the most common type of data stream learning approach are ensemble approaches, which involve the training of multiple base learners.
View Article and Find Full Text PDFEnviron Microbiol
January 2025
Thermophile Research Unit, Te Aka Mātuatua, School of Science, Te Whare Wānanga o Waikato, University of Waikato, Hamilton, Aotearoa-New Zealand.
Active geothermal systems are relatively rare in Antarctica and represent metaphorical islands ideal to study microbial dispersal. In this study, we tested the macro-ecological concept that high dispersal rates result in communities being dominated by either habitat generalists or specialists by investigating the microbial communities on four geographically separated geothermal sites on three Antarctic volcanoes (Mts. Erebus, Melbourne, and Rittman).
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
Power Solutions Group, Onsemi, Scottsdale, AZ 85250, USA.
Trench MOS Barrier Schottky (TMBS) rectifiers offer superior static and dynamic electrical characteristics when compared with planar Schottky rectifiers for a given active die size. The unique structure of TMBS devices allows for efficient manipulation of the electric field, enabling higher doping concentrations in the drift region and thus achieving a lower forward voltage drop (VF) and reduced leakage current (IR) while maintaining high breakdown voltage (BV). While the use of trenches to push electric fields away from the mesa surface is a widely employed concept for vertical power devices, a significant gap exists in the analytical modeling of this effect, with most prior studies relying heavily on computationally intensive numerical simulations.
View Article and Find Full Text PDFDalton Trans
January 2025
Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Metallurgical and Materials Engineering, Glass Research and Development Laboratory, Istanbul, 34220, Türkiye.
Elevated temperatures can lead to reabsorption and color drift, compromising the quality of phosphor-converted white light-emitting diode (pc-WLED) devices. To ensure the performance of WLEDs under these conditions, it is essential to develop luminescent materials that maintain stable color. Consequently, there is a pressing need for single-phase white-emitting phosphors with robust chromatic stability.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Antal Bejczy Center for Intelligent Robotics, Obuda University, 1034 Budapest, Hungary.
This paper presents a robust and efficient method for validating the accuracy of orientation sensors commonly used in practical applications, leveraging measurements from a commercial robotic manipulator as a high-precision reference. The key concept lies in determining the rotational transformations between the robot's base frame and the sensor's reference, as well as between the TCP (Tool Center Point) frame and the sensor frame, without requiring precise alignment. Key advantages of the proposed method include its independence from the exact measurement of rotations between the reference instrumentation and the sensor, systematic testing capabilities, and the ability to produce repeatable excitation patterns under controlled conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!