Control of Chemical Reactions through Coherent Excitation of Eigenlevels: A Demonstration via Vibronic Coupling in SO.

J Phys Chem A

Department of Chemistry, University of Pennsylvania, 231 South 34th St., Philadelphia, Pennsylvania 19104, United States.

Published: October 2021

Through coherent excitation of a pair of vibronically coupled eigenlevels, an oscillation of 130 kcal/mol in energy excitation between electronic and vibrational motions (on a time scale of 10 s) is created for the triatomic molecule, sulfur dioxide (SO). The reactivity of the molecule can be influenced depending upon whether the molecule is vibrationally or electronically excited with this substantial amount of energy. The effect of excitation on reactivity is demonstrated through SO photodissociation as a function of time following coherent excitation, monitored by multiphoton ionization of the SO product.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.1c05778DOI Listing

Publication Analysis

Top Keywords

coherent excitation
12
energy excitation
8
excitation
5
control chemical
4
chemical reactions
4
reactions coherent
4
excitation eigenlevels
4
eigenlevels demonstration
4
demonstration vibronic
4
vibronic coupling
4

Similar Publications

Dynamical symmetries, time-dependent operators that almost commute with the Hamiltonian, extend the role of ordinary symmetries. Motivated by progress in quantum technologies, we illustrate a practical algebraic approach to computing such time-dependent operators. Explicitly we expand them as a linear combination of time-independent operators with time-dependent coefficients.

View Article and Find Full Text PDF

Vibrational polaritons are formed by strong coupling of molecular vibrations and photon modes in an optical cavity. Experiments have demonstrated that vibrational strong coupling can change molecular properties and even affect chemical reactivity. However, the interactions in a molecular ensemble are complex, and the exact mechanisms that lead to modifications are not fully understood yet.

View Article and Find Full Text PDF

Homonuclear decoupled INADEQUATE NMR methods with improved sensitivity and resolution in solid-state NMR.

J Magn Reson

December 2024

Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France. Electronic address:

The two-dimensional (2D) refocused INADEQUATE NMR experiment, which correlates double-quantum (DQ) and single-quantum (SQ) coherences, is widely used to probe the chemical connectivities in solids. Nevertheless, the multiplets along the F dimension reduce the resolution and sensitivity of this experiment. The Composite-Refocusing (CR) technique with two excitation pulses has been proposed to suppress these multiplets in 2D INADEQUATE spectra of liquids.

View Article and Find Full Text PDF

In doped semiconductors such as monolayer transition-metal dichalcogenides (TMDs), the optical properties are predominantly determined by exciton polarons, which are coherent superpositions of excitons and electron-hole excitation pairs in the Fermi sea. Here, we theoretically study the effect of exciton polarons on thermal radiation in doped two-dimensional semiconductors. By deriving an emissivity formula in terms of the dielectric function and the thickness of two-dimensional semiconductors, we show that the emissivity spectrum exhibits a narrow peak at the energy of an exciton polaron.

View Article and Find Full Text PDF

Laser excitation of the 1-2 transition in singly-ionized helium.

Commun Phys

December 2024

LaserLaB, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, the Netherlands.

Laser spectroscopy of atomic hydrogen and hydrogen-like atoms is a powerful tool for tests of fundamental physics. The 1-2 transition of hydrogen in particular is a cornerstone for stringent Quantum Electrodynamics (QED) tests and for an accurate determination of the Rydberg constant. We report laser excitation of the 1-2 transition in singly-ionized helium (He), a hydrogen-like ion with much higher sensitivity to QED than hydrogen itself.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!