Phononic crystals (PnCs) have attracted much attention due to their great potential for dissipation engineering and propagation manipulation of phonons. Notably, the excellent electrical and mechanical properties of graphene make it a promising material for nanoelectromechanical resonators. Transferring a graphene flake to a prepatterned periodic mechanical structure enables the realization of a PnC with on-chip scale. Here, we demonstrate a nanoelectromechanical periodic array by anchoring a graphene membrane to a 9 × 9 array of standing nanopillars. The device exhibits a quasi-continuous frequency spectrum with resonance modes distributed from ∼120 MHz to ∼980 MHz. Moreover, the resonant frequencies of these modes can be electrically tuned by varying the voltage applied to the gate electrode sitting underneath. Simulations suggest that the observed band-like spectrum provides an experimental evidence for PnC formation. Our architecture has large fabrication flexibility, offering a promising platform for investigations on PnCs with electrical accessibility and tunability.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.1c01866DOI Listing

Publication Analysis

Top Keywords

nanoelectromechanical periodic
8
periodic array
8
graphene-based nanoelectromechanical
4
array tunable
4
tunable frequency
4
frequency phononic
4
phononic crystals
4
crystals pncs
4
pncs attracted
4
attracted attention
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!