Time-resolved spectroscopy is an essential part of both fundamental and applied chemical research. Such techniques access light-initiated dynamics on time scales ranging from femtosecond to microsecond. Many techniques falling under this description have been applied to gain significant insight into metal-organic frameworks (MOFs), a diverse class of porous coordination polymers. MOFs are highly tunable, both compositionally and structurally, and unique challenges are encountered in applying time-resolved spectroscopy to interrogate their light-initiated properties. These properties involve various excited state mechanisms such as crystallographically defined energy transfer, charge transfer, and localization within the framework, photoconductivity, and structural dynamics. The field of time-resolved MOF spectroscopic studies is quite nascent; each original report cited in this review was published within the past decade. As such, this review is a timely and comprehensive summary of the most significant contributions in this emerging field, with focuses on the overarching spectroscopic concepts applied and on identifying key challenges and future outlooks moving forward.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.chemrev.1c00528DOI Listing

Publication Analysis

Top Keywords

time-resolved spectroscopy
12
light-initiated dynamics
8
metal-organic frameworks
8
interrogating light-initiated
4
dynamics metal-organic
4
time-resolved
4
frameworks time-resolved
4
spectroscopy time-resolved
4
spectroscopy essential
4
essential fundamental
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!