Recent Advances on Carbon Monoxide Releasing Molecules for Antibacterial Applications.

ChemMedChem

Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Anhui 230026, Hefei, China.

Published: December 2021

Carbon monoxide (CO) has been known as an endogenous signaling molecule in addition to an air pollutant. It plays a critical role in many physiological and pathological processes. Therefore, CO has been recognized as a potent therapeutic agent for the treatment of numerous diseases such as cancers, rheumatoid arthritis, and so on. Instead of direct CO inhalation, two main categories of CO-releasing molecules (CORMs) (i. e., metal carbonyls and nonmetallic CO donors) have been developed to safely and locally deliver CO to target tissues. In this minireview, we summarize the recent achievements of CORMs on antibacterial applications. It appears that the antibacterial activity of CORMs is different from CO gas, which is tightly correlated to not only the types of CORMs applied but also the tested bacterial strains. In some circumstances, the antibacterial mechanisms are debated and need to be clarified. We hope more attention can be paid to this emerging field and new antibacterial agents with a low risk of drug resistance can be developed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cmdc.202100555DOI Listing

Publication Analysis

Top Keywords

carbon monoxide
8
antibacterial applications
8
antibacterial
5
advances carbon
4
monoxide releasing
4
releasing molecules
4
molecules antibacterial
4
applications carbon
4
monoxide endogenous
4
endogenous signaling
4

Similar Publications

Understanding the interplay between gasotransmitters is essential for unlocking their therapeutic potential. However, achieving spatiotemporally controlled co-delivery to target cells remains a significant challenge. Herein, we propose an innovative strategy for the intracellular co-delivery of carbon monoxide (CO) and nitric oxide (NO) gasotransmitters under clinically relevant wavelengths.

View Article and Find Full Text PDF

Modification of polylactic acid (PLA) is a promising strategy for the next generation of bioresorbable vascular stent biomaterials. With this focus, FeMOFs nanoparticles was incorporated in PLA, and then post loading of carbon monoxide (CO) was performed by pressurization. It showed FeMOFs incorporation increased hydrophilicity of the surface and CO loading, and CO release was sustained at least for 3 days.

View Article and Find Full Text PDF

Electrocatalytic urea synthesis from carbon dioxide (CO2) and nitrate (NO3-) offers a promising alternative to traditional industrial methods. However, current catalysts face limitations in the supplies of CO* and Nrelated* intermediates, and their coupling, resulting in unsatisfactory urea production efficiency and energy consumption. To overcome these challenges, we carried out tandem electrosynthesis approach using ruthenium dioxide-supported palladium-gold alloys (Pd2Au1/RuO2).

View Article and Find Full Text PDF

Contingency management (CM), an evidence-based behavioral strategy that rewards positive behavior change including tobacco cessation, is rarely offered to support people with HIV (PWH) who smoke. In this study, we explored perspectives among patients and research staff engaged in a multi-site randomized clinical trial involving clinical pharmacist-delivered CM within HIV clinics. Between February and September 2023, we conducted 1:1 interviews with 12 PWH randomized to receive CM and one focus group with 8 staff (i.

View Article and Find Full Text PDF

Background: Severe respiratory complications following kidney transplantation have been reported, yet remain poorly understood in the pediatric population. This study aimed to document respiratory disease in this population.

Methods: At annual follow-ups, patients completed a respiratory symptoms questionnaire and underwent pulmonary function tests (PFTs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!