Hexavalent chromium [Cr(VI)] is extremely toxic to plant cells and has been recognized to possess a high redox potential. Tolerant plant species have shown the ability to reduce Cr(VI), but the operating mechanism involved in this process is not elucidated. Thus, the aim of this study was to investigate the possible involvement of thiolic and phenolic compounds and thioredoxin expression during Cr(VI) reduction in S. minima. In addition, a probable enzymatic reduction of Cr(VI) was investigated. Plants were exposed to 20 mg L Cr(VI) concentration during 7 days under controlled conditions. The amount of metal accumulated in lacinias (root-like submerged leaves) and fronds (floating leaves) indicated that a low percentage of absorbed Cr(VI) was mobilized from lacinias to fronds. X-ray absorption near-edge structure (XANES) analysis revealed that Cr(III) was the only chromium species occurring in S. minima plants. Thiols and phenolics of lacinias and fronds were increased significantly by Cr(VI) treatment, but accumulation patterns were different. The expression of an h-type thioredoxin (Trx h) was demonstrated for the first time in Cr-exposed lacinias. Enzymatic reduction showed a low contribution to the Cr(VI) reduction. Data of this study provide evidences on the involvement of thiols, thioredoxin, and phenolics in the reduction of Cr(VI) to Cr(III) in S. minima tissues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-021-15967-z | DOI Listing |
J Hazard Mater
December 2024
School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China. Electronic address:
Chromium [Cr(VI)]-induced soil pollution is a serious environmental threat. Bioremediation utilizes specific microbes capable of transforming Cr(VI) into the less toxic Cr(III), however, microbial efficacy can be inhibited by elevated pollutant concentrations and competition from indigenous microbial communities. Thus, this study explored the potential of single and multi-domain microbial consortia encapsulated in alginate to overcome these shortcomings.
View Article and Find Full Text PDFPLoS One
December 2024
School of Design, Informatics and Business, Abertay University, Dundee, United Kingdom.
The reuse of electro-coagulated sludge as an adsorbent for Cr(VI) ion reduction was investigated in this study. Electro-coagulated sludge was obtained during the removal of citric acid wastewater by the electrocoagulation process. The following parameters were optimized for Cr(VI) reduction: pH (5-7), initial Cr(VI) concentration (10-50 mg/L), contact time (10-45 min), and adsorbent dosage (0.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Mining Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran.
To tackle the challenges of increasing the efficiency of photocatalysts, a ternary magnetic heterojunction photocatalyst containing spinel cobalt and zinc ferrites, and zeolite (CZZ) was designed and fabricated. The physicochemical properties of the novel photocatalyst were verified using characterization techniques such as XRD, FT-IR, FE-SEM, EDS mapping, N adsorption-desorption, VSM, PL, and UV-Vis DRS. The CZZ photocatalyst exhibited a significant Cr (VI) reduction rate of 0.
View Article and Find Full Text PDFEnviron Res
December 2024
School of Civil Engineering, Shandong University, Jinan, 250061, China. Electronic address:
The structure and active components of the filling material play a critical role in the contamination remediation performance of permeable reactive barriers. However, current methods lack a comprehensive understanding of the structural evolution and long-term performance of these materials during remediation processes. This study utilizes column experiments combined with spectral induced polarization (SIP) monitoring to investigate the effectiveness of zero-valent iron (ZVI), activated carbon (AC), and their composite with sand in removing Cr(VI).
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Department of Civil, Construction and Environmental Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA.
Highly toxic halo-/nitro-substituted organics, often in low concentrations and with high hydrophobicity, make it difficult to obtain electrons for reduction when strongly electron-competing substances (e.g., O, H/HO, NO) coexist.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!